#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Potential causes of early death among admitted newborns in a rural Tanzanian hospital


Autoři: Robert Moshiro aff001;  Jeffrey M. Perlman aff003;  Paschal Mdoe aff004;  Hussein Kidanto aff005;  Jan Terje Kvaløy aff006;  Hege L. Ersdal aff001
Působiště autorů: Faculty of Health Sciences, University of Stavanger, Stavanger, Norway aff001;  Department of Paediatrics and Child Health, Muhimbili National Hospital, Dar es Salaam, Tanzania aff002;  Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America aff003;  Department of Obstetrics and Gynecology, Haydom Lutheran Hospital, Manyara, Tanzania aff004;  School of Medicine, Aga Khan University, Dar es Salaam, Tanzania aff005;  Research Department, Stavanger University Hospital, Stavanger, Norway aff006;  Department of Mathematics and Physics, University of Stavanger, Stavanger, Norway aff007;  Department of Anesthesiology and Intensive Care, Stavanger University Hospital, Stavanger, Norway aff008
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222935

Souhrn

Background

Approximately 40,000 newborns die each year in Tanzania. Regional differences in outcome are common. Reviewing current local data, as well as defining potential causal pathways leading to death are urgently needed, before targeted interventions can be implemented

Objective

To describe the clinical characteristics and potential causal pathways contributing to newborn death and determine the presumed causes of newborn mortality within seven days, in a rural hospital setting.

Methods

Prospective observational study of admitted newborns born October 2014–July 2017. Information about labour/delivery and newborn management/care were recorded on data collection forms. Causes of deaths were predominantly based on clinical diagnosis.

Results

671 were admitted to a neonatal area. Reasons included prematurity n = 213 (32%), respiratory issues n = 209 (31%), meconium stained amniotic fluid with respiratory issues n = 115 (17%) and observation for < 24 hours n = 97 (14%). Death occurred in 124 infants. Presumed causes were birth asphyxia (BA) n = 59 (48%), prematurity n = 19 (15%), presumed sepsis n = 19 (15%), meconium aspiration syndrome (MAS) n = 13 (10%) and congenital abnormalities n = 14 (11%). More newborns who died versus survivors had oxygen saturation <60% on admission (37/113 vs 32/258; p≤0.001) respectively. Moderate hypothermia on admission was common i.e. deaths 35.1 (34.636.0) vs survivors 35.5 (35.036.0)°C (p≤0.001). Term newborns who died versus survivors were fourfold more likely to have received positive pressure ventilation after birth i.e. 4.57 (1.22–17.03) (p<0.02).

Conclusion

Intrapartum-related complications (BA, MAS), prematurity, and presumed sepsis were the leading causes of death. Intrapartum hypoxia, prematurity and attendant complications and presumed sepsis, are major pathways leading to death. Severe hypoxia and hypothermia upon admission are additional contributing factors. Strategies to identify fetuses at risk during labour e.g. improved fetal heart rate monitoring, coupled with timely interventions, and implementation of WHO interventions for preterm newborns, may reduce mortality in this low resource setting.

Klíčová slova:

Amniotic fluid – Heart rate – Hypoxia – Labor and delivery – Neonatal sepsis – Neonates – Sepsis – Hypothermia


Zdroje

1. Tanzania Demographic Health Survery and Malaria Indicator. 2015.

2. Afnan-Holmes H, Magoma M, John T, Levira F, Msemo G, Armstrong CE, et al. Tanzania’s Countdown to 2015: An analysis of two decades of progress and gaps for reproductive, maternal, newborn, and child health, to inform priorities for post-2015. Lancet Glob Heal. 2015;3: e396–409

3. Lawn JE, Cousens S, Zupan J. 4 Million neonatal deaths: When? Where? Why? Lancet. 2005;365:891–900. doi: 10.1016/S0140-6736(05)71048-5 15752534

4. Lawn JE, Blencowe H, Oza S, You D, Lee ACC, Waiswa P, et al. Every newborn: Progress, priorities, and potential beyond survival. Lancet. 2014;384:189–205. doi: 10.1016/S0140-6736(14)60496-7 24853593

5. World Health Organization. Global Health Observatory (GHO): Data Repository. GHO. 2018. Available from: http://apps.who.int/gho/data/node.home

6. Mmbaga BT, Lie RT, Olomi R, Mahande MJ, Kvåle G, Daltveit AK. Cause-specific neonatal mortality in a neonatal care unit in Northern Tanzania: a registry based cohort study. BMC Pediatr. 2012;12:116. doi: 10.1186/1471-2431-12-116 22871208

7. Tyson JE, Parikh NA, Langer J, Green C, Higgins RD. Intensive care for extreme prematurity-moving beyond gestational age. N Engl J Med. 2008;358:1672–81. doi: 10.1056/NEJMoa073059 18420500

8. Straughn HK, Goldenberg RL, Tolosa JE, Daly S, Codes J De, Festin MR. Birthweight-specific neonatal mortality in developing countries and obstetric practices. Int J Gynaecol Obstet. 2003;80:71–8. doi: 10.1016/s0020-7292(02)00309-0 12527467

9. World Health Organization. WHO Recommendations on Interventions to Improve Preterm Birth Outcomes. 2015. Available from: http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/preterm-birth-guideline/en/%5Cn

10. Mdoe PF, Ersdal HL, Mduma E, Perlman JM, Moshiro R, Wangwe PT, et al. Intermittent fetal heart rate monitoring using a fetoscope or hand held Doppler in a rural Tanzania: a randomized controlled trial. BMC Pregnancy Childbirth. 2018;18:134. doi: 10.1186/s12884-018-1746-9 29728142

11. The American Academy of of Pediatrics. Helping Babies Breathe. 2009. https://www.aap.org/en-us/advocacy-and-policy/aap-health-initiatives/helping-babies-survive/Pages/Helping-Babies-Breathe.aspx

12. Ersdal HL, Eilevstjønn J, Linde JE, Yeconia A, Mduma ER, Kidanto H, et al. Fresh stillborn and severely asphyxiated neonates share a common hypoxic-ischemic pathway. Int J Gynecol Obstet. 2018;141:171–180.

13. World Health Organization. Maternal, Newborn, Child and Adolescent Health. Essential newborn care. World Health Organization. 2010. http://www.who.int/maternal_child_adolescent/documents/newborncare_course/en/

14. Cornblath M, Hawdon JM, Williams AF, Aynsley-Green A, Ward-Platt MP, Schwartz R, et al. Controversies Regarding Definition of Neonatal Hypoglycemia: Suggested Operational Thresholds. Pediatrics. 2000;105:1141–5. doi: 10.1542/peds.105.5.1141 10790476

15. Thompson CM, Puterman AS, Linley LL, Hann M, van der Elst CW, Molteno CD, et al., The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr, 1997. 86(7): p. 757–61. doi: 10.1111/j.1651-2227.1997.tb08581.x 9240886

16. Ohlin A, Björkqvist M, Montgomery SM, Schollin J. Clinical signs and CRP values associated with blood culture results in neonates evaluated for suspected sepsis. Acta Paediatr. 2010;99:1635–40. doi: 10.1111/j.1651-2227.2010.01913.x 20560896

17. Griffin MP, Lake DE, O’Shea TM, Moorman JR. Heart rate characteristics and clinical signs in neonatal sepsis. Pediatr Res. 2007;61:222–7. doi: 10.1203/01.pdr.0000252438.65759.af 17237726

18. Perlman JM, Tack ED, Martin T, Shackelford G, Amon E. Acute Systemic Organ Injury in Term Infants After Asphyxia. Am J Dis Child.1989;143:617–20 doi: 10.1001/archpedi.1989.02150170119037 2718998

19. Kiley JP, Eldridge FL, Millhorn DE. The effect of hypothermia on central neural control of respiration. Respir Physiol 1984;58:295–312 doi: 10.1016/0034-5687(84)90006-9 6441983

20. Askin D. Newborn adaptation to extrauterine life. In: Simpson K. R. & Creehan P. A.. AWHONN’s Perinatal Nursing. (3rd ed.). Philadelphia: Lippincott Williams & Wilkins.

21. Vain NE, Szyld EG, Prudent LM, Wiswell TE, Aguilar AM, Vivas NI. Oropharyngeal and nasopharyngeal suctioning of meconium-stained neonates before delivery of their shoulders: Multicentre, randomised controlled trial. Lancet. 2004;364:597–602 doi: 10.1016/S0140-6736(04)16852-9 15313360

22. Wiswell TE, Henley MA. Intratracheal suctioning, systemic infection, and the meconium aspiration syndrome. Pediatrics. 1992;89:203 1734384

23. Mdoe PF, Ersdal HL, Mduma E, Moshiro R, Dalen I, et al. Randomized controlled trial of continuous Doppler versus intermittent fetoscope fetal heart rate monitoring in a low-resource setting. Int J Gynaecol Obstet. 2018;143:344–350. doi: 10.1002/ijgo.12648 30120775

24. Kamala BA, Ersdal HL, Dalen I, Abeid MS, Ngarina MM, et al. Implementation of a novel continuous fetal Doppler (Moyo) improves quality of intrapartum fetal heart rate monitoring in a resource-limited tertiary hospital in Tanzania: An observational study. PLoS One. 2018;13:e0205698 doi: 10.1371/journal.pone.0205698 30308040

25. Ersdal HL, Mduma E, Svensen E, Perlman JM. Early initiation of basic resuscitation interventions including face mask ventilation may reduce birth asphyxia related mortality in low-income countries. A prospective descriptive observational study. Resuscitation. 2012;83:869–73. doi: 10.1016/j.resuscitation.2011.12.011 22198423

26. Moshiro R, Ersdal HL, Mdoe P, Kidanto HL, Mbekenga C. Factors affecting effective ventilation during newborn resuscitation: a qualitative study among midwives in rural Tanzania. Glob Health Action. 2018;11:1423862. doi: 10.1080/16549716.2018.1423862 29343190

27. Perlman JM, Risser R. Severe fetal acidemia: Neonatal neurologic features and short-term outcome. Pediatr Neurol.1993;9:277–82 doi: 10.1016/0887-8994(93)90063-i 8216539

28. Patel Ravi M, Sarah Kandefer, Walsh Michele C., Bell Edward F., Carlo Waldemar A., et al. Causes and Timing of Death in Extremely Premature Infants from 2000 through 2011N Engl J Med 2015; 372:331–340

29. Massawe A, Kidanto HL, Moshiro R, Majaliwa E, Chacha F, Shayo A, et al. A care bundle including antenatal corticosteroids reduces preterm infant mortality in Tanzania a low resource country. PLoS One. 2018;13:e0193146 doi: 10.1371/journal.pone.0193146 29513706

30. Laptook AR, Salhab W, Bhaskar B. Admission Temperature of Low Birth Weight Infants: Predictors and Associated Morbidities. Pediatrics. 2007;119:e643–9. doi: 10.1542/peds.2006-0943 17296783

31. de Siqueira Caldas JP, Ferri WAG, Marba STM, Aragon DC, Guinsburg R, et al. Eur J Pediatr (2019). https://doi.org/10.1007/s00431-019-03386-9

32. Mccall EM, Alderdice F, Halliday HL, Vohra S, Johnston L. Interventions to prevent hypothermia at birth in preterm and/or low birth weight infants. Cochrane Database of Systematic Reviews. 2018. Issue 2. Art. No.: CD004210. DOI:

33. Leadford AE, Warren JB, Manasyan A, Chomba E, Salas AA, Schelonka R, et al. Plastic Bags for Prevention of Hypothermia in Preterm and Low Birth Weight Infants. Pediatrics. 2013;132:e128–34 doi: 10.1542/peds.2012-2030 23733796


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#