Time series experimental design under one-shot sampling: The importance of condition diversity
Autoři:
Xiaohan Kang aff001; Bruce Hajek aff001; Faqiang Wu aff002; Yoshie Hanzawa aff002
Působiště autorů:
Coordinated Science Laboratory and Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States of America
aff001; Department of Biology, California State University, Northridge, Northridge, California, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224577
Souhrn
Many biological data sets are prepared using one-shot sampling, in which each individual organism is sampled at most once. Time series therefore do not follow trajectories of individuals over time. However, samples collected at different times from individuals grown under the same conditions share the same perturbations of the biological processes, and hence behave as surrogates for multiple samples from a single individual at different times. This implies the importance of growing individuals under multiple conditions if one-shot sampling is used. This paper models the condition effect explicitly by using condition-dependent nominal mRNA production amounts for each gene, it quantifies the performance of network structure estimators both analytically and numerically, and it illustrates the difficulty in network reconstruction under one-shot sampling when the condition effect is absent. A case study of an Arabidopsis circadian clock network model is also included.
Klíčová slova:
Algorithms – Arabidopsis thaliana – Covariance – Gene expression – Gene regulatory networks – Genetic networks – Leaves – Network analysis
Zdroje
1. Schaffter T, Marbach D, Floreano D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics. 2011;27(16):2263–2270. doi: 10.1093/bioinformatics/btr373 21697125
2. Kang X. One-shot sampling simulations; 2019. Available from: https://github.com/Veggente/one-shot-sampling.
3. Poor HV. An Introduction to Signal Detection and Estimation. Springer-Verlag New York; 1994.
4. Sun J, Taylor D, Bollt EM. Causal Network Inference by Optimal Causation Entropy. SIAM Journal on Applied Dynamical Systems. 2015;14(1):73–106. doi: 10.1137/140956166
5. Emad A, Milenkovic O. CaSPIAN: A Causal Compressive Sensing Algorithm for Discovering Directed Interactions in Gene Networks. PLoS ONE. 2014;9(3):e90781. doi: 10.1371/journal.pone.0090781 24622336
6. Bertsimas D, King A, Mazumder R. Best subset selection via a modern optimization lens. The Annals of Statistics. 2016;44(2):813–852. doi: 10.1214/15-AOS1388
7. Bento J, Ibrahimi M, Montanari A. Learning Networks of Stochastic Differential Equations. In: Advances in Neural Information Processing Systems (NIPS); 2010. p. 172–180. Available from: http://papers.nips.cc/paper/4055-learning-networks-of-stochastic-differential-equations.pdf.
8. Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, et al. Wisdom of crowds for robust gene network inference. Nature Methods. 2012;9(8):796–804. doi: 10.1038/nmeth.2016 22796662
9. Krouk G, Mirowski P, LeCun Y, Shasha DE, Coruzzi GM. Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biology. 2010;11(12):R123. doi: 10.1186/gb-2010-11-12-r123 21182762
10. Yamaoka C, Suzuki Y, Makino A. Differential Expression of Genes of the Calvin–Benson Cycle and its Related Genes During Leaf Development in Rice. Plant and Cell Physiology. 2015;57(1):115–124. doi: 10.1093/pcp/pcv183 26615032
11. Taniguchi M, Kiba T, Sakakibara H, Ueguchi C, Mizuno T, Sugiyama T. Expression of Arabidopsis response regulator homologs is induced by cytokinins and nitrate. FEBS Letters. 1998;429(3):259–262. doi: 10.1016/s0014-5793(98)00611-5 9662428
12. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology. 2010;28(5):511–515. doi: 10.1038/nbt.1621 20436464
13. Kiselev VY, Juvin V, Malek M, Luscombe N, Hawkins P, Novère NL, et al. Perturbations of PIP3 signalling trigger a global remodelling of mRNA landscape and reveal a transcriptional feedback loop. Nucleic Acids Research. 2015;43(20):9663–9679. doi: 10.1093/nar/gkv1015 26464442
14. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell. 2002;13(6):1977–2000. doi: 10.1091/mbc.02-02-0030 12058064
15. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biology. 2016;17(1):13. doi: 10.1186/s13059-016-0881-8 26813401
16. Liang M, Briggs AG, Rute E, Greene AS, Cowley AW. Quantitative assessment of the importance of dye switching and biological replication in cDNA microarray studies. Physiological Genomics. 2003;14(3):199–207. doi: 10.1152/physiolgenomics.00143.2002 12799473
17. Liu Y, Zhou J, White KP. RNA-seq differential expression studies: more sequence or more replication? Bioinformatics. 2014;30(3):301–304. doi: 10.1093/bioinformatics/btt688 24319002
18. Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V, et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA. 2016;22(6):839–851. doi: 10.1261/rna.053959.115 27022035
19. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research. 2012;40(10):4288–4297. doi: 10.1093/nar/gks042 22287627
20. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nature Methods. 2017;14:687–690. doi: 10.1038/nmeth.4324 28581496
21. Locke JCW, Southern MM, Kozma-Bognár L, Hibberd V, Brown PE, Turner MS, et al. Extension of a genetic network model by iterative experimentation and mathematical analysis. Molecular Systems Biology. 2005;1(1). doi: 10.1038/msb4100018 16729048
22. Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ. The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Molecular Systems Biology. 2012;8(1):574. doi: 10.1038/msb.2012.6 22395476
23. Seaton DD, Smith RW, Song YH, MacGregor DR, Stewart K, Steel G, et al. Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Molecular Systems Biology. 2015;11(1). doi: 10.15252/msb.20145766 25600997
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy