Differences in protein structural regions that impact functional specificity in GT2 family β-glucan synthases
Autoři:
Daniel P. Oehme aff001; Thomas Shafee aff002; Matthew T. Downton aff003; Antony Bacic aff001; Monika S. Doblin aff001
Působiště autorů:
ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
aff001; Latrobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, Victoria, Australia
aff002; School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224442
Souhrn
Most cell wall and secreted β-glucans are synthesised by the CAZy Glycosyltransferase 2 family (www.cazy.org), with different members catalysing the formation of (1,4)-β-, (1,3)-β-, or both (1,4)- and (1,3)-β-glucosidic linkages. Given the distinct physicochemical properties of each of the resultant β-glucans (cellulose, curdlan, and mixed linkage glucan, respectively) are crucial to their biological and biotechnological functions, there is a desire to understand the molecular evolution of synthesis and how linkage specificity is determined. With structural studies hamstrung by the instability of these proteins to solubilisation, we have utilised in silico techniques and the crystal structure for a bacterial cellulose synthase to further understand how these enzymes have evolved distinct functions. Sequence and phylogenetic analyses were performed to determine amino acid conservation, both family-wide and within each sub-family. Further structural analysis centred on comparison of a bacterial curdlan synthase homology model with the bacterial cellulose synthase crystal structure, with molecular dynamics simulations performed with their respective β-glucan products bound in the trans-membrane channel. Key residues that differentially interact with the different β-glucan chains and have sub-family-specific conservation were found to reside at the entrance of the trans-membrane channel. The linkage-specific catalytic activity of these enzymes and hence the type of β-glucan chain built is thus likely determined by the different interactions between the proteins and the first few glucose residues in the channel, which in turn dictates the position of the acceptor glucose. The sequence-function relationships for the bacterial β-glucan synthases pave the way for extending this understanding to other kingdoms, such as plants.
Klíčová slova:
Biochemical simulations – Cellulose – Crystal structure – Glucans – Multiple alignment calculation – Sequence alignment – Sequence motif analysis – Transient receptor potential channels
Zdroje
1. Pérez-Mendoza D, Rodríguez-Carvajal MÁ, Romero-Jiménez L, Farias GDA, Lloret J, Gallegos MT, et al. Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti. Proc Natl Acad Sci 2015;112:E757–65. doi: 10.1073/pnas.1421748112 25650430
2. Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, et al. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Science 2006;311:1940–2. doi: 10.1126/science.1122975 16574868
3. Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, et al. A barley cellulose synthase-like CSLH gene in transgenic Arabidopsis 2009;106:5996–6001. doi: 10.1073/pnas.0902019106 19321749
4. Fincher GB. Exploring the evolution of (1,3;1,4)-β-D-glucans in plant cell walls: comparative genomics can help! Curr Opin Plant Biol 2009;12:140–7. doi: 10.1016/j.pbi.2009.01.002 19168383
5. Little A, Schwerdt JG, Shirley NJ, Khor SF, Neumann K, O’Donovan LA, et al. Revised Phylogeny of the Cellulose Synthase Gene Superfamily: Insights into Cell Wall Evolution. Plant Physiol 2018;177:1124–41. doi: 10.1104/pp.17.01718 29780036
6. Collins HM, Burton RA, Topping DL, Liao M-L, Bacic A, Fincher GB. Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chem 2010;87:272–82. doi: 10.1094/CCHEM-87-4-0272
7. Johnson KL, Gidley MJ, Bacic A, Doblin MS. Cell wall biomechanics: a tractable challenge in manipulating plant cell walls ‘fit for purpose’! Curr Opin Biotechnol 2018;49:163–71. doi: 10.1016/j.copbio.2017.08.013 28915438
8. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014;42:490–5. doi: 10.1093/nar/gkt1178 24270786
9. Römling U, Galperin MY. Bacterial cellulose biosynthesis: Diversity of operons, subunits, products, and functions. Trends Microbiol 2015;23:545–57. doi: 10.1016/j.tim.2015.05.005 26077867
10. Grenville-Briggs LJ, Anderson VL, Fugelstad J, Avrova AO, Bouzenzana J, Williams A, et al. Cellulose Synthesis in Phytophthora infestans Is Required for Normal Appressorium Formation and Successful Infection of Potato. Plant Cell 2008;20:720–38. doi: 10.1105/tpc.107.052043 18349153
11. McFarlane HE, Döring A, Persson S. The cell biology of cellulose synthesis. Annu Rev Plant Biol 2014;65:69–94. doi: 10.1146/annurev-arplant-050213-040240 24579997
12. Stasinopoulos SJ, Fisher PR, Stone B a., Stanisich V a. Detection of two loci involved in (1->3)-β-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene. Glycobiology 1999;9:31–41. doi: 10.1093/glycob/9.1.31 9884404
13. Sethaphong L, Haigler CH, Kubicki JD, Zimmer J, Bonetta D, DeBolt S, et al. Tertiary model of a plant cellulose synthase. Proc Natl Acad Sci U S A 2013;110:7512–7. doi: 10.1073/pnas.1301027110 23592721
14. Douglas CM, Foor F, Marrinan JA, Morin N, Nielsen JB, Dahl AM, et al. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc Natl Acad Sci 1994;91:12907–11. doi: 10.1073/pnas.91.26.12907 7528927
15. Ellinger D, Voigt CA. Callose biosynthesis in arabidopsis with a focus on pathogen response: What we have learned within the last decade. Ann Bot 2014;114:1349–58. doi: 10.1093/aob/mcu120 24984713
16. Kumar M, Atanassov I, Turner S. Functional Analysis of Cellulose Synthase (CESA) Protein Class Specificity. Plant Physiol 2017;173:970–83. doi: 10.1104/pp.16.01642 27923988
17. Glasner ME, Gerlt JA, Babbitt PC. Evolution of enzyme superfamilies. Curr Opin Chem Biol 2006;10:492–7. doi: 10.1016/j.cbpa.2006.08.012 16935022
18. Jonas S, Hollfelder F. Mechanism and Catalytic Promiscuity: Emerging Mechanistic Principles for Identification and Manipulation of Catalytically Promiscuous Enzymes. Protein Eng. Handb., Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2011, p. 47–79. doi: 10.1002/9783527634026.ch3
19. Aharoni A, Gaidukov L, Khersonsky O, Gould SM, Roodveldt C, Tawfik DS. The “evolvability” of promiscuous protein functions. Nat Genet 2005;37:73–6. doi: 10.1038/ng1482 15568024
20. Khersonsky O, Tawfik DS. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 2010;79:471–505. doi: 10.1146/annurev-biochem-030409-143718 20235827
21. Liepman AH, Nairn CJ, Willats WGT, Sørensen I, Roberts AW, Keegstra K. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants. Plant Physiol 2007;143:1881–93. doi: 10.1104/pp.106.093989 17307900
22. Guerriero G, Fugelstad J, Bulone V. What Do We Really Know about Cellulose Biosynthesis in Higher Plants? J Integr Plant Biol 2010;52:161–75. doi: 10.1111/j.1744-7909.2010.00935.x 20377678
23. Lai-Kee-Him J, Chanzy H, Müller M, Putaux JL, Imai T, Bulone V. In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: Structural differences. J Biol Chem 2002;277:36931–9. doi: 10.1074/jbc.M203530200 12145282
24. Colombani A, Djerbi S, Bessueille L, Blomqvist K, Ohlsson A, Berglund T, et al. In vitro synthesis of (1->3)-β-D-glucan (callose) and cellulose by detergent extracts of membranes from cell suspension cultures of hybrid aspen. Cellulose 2004;11:313–27. doi: 10.1023/B:CELL.0000046404.25406.19
25. Tsuchiya K, Urahara T, Konishi T, Kotake T, Tohno-oka T, Komae K, et al. Biosynthesis of (1->3),(1->4)-β-glucan in developing endosperms of barley (Hordeum vulgare). Physiol Plant 2005;125:181–91. doi: 10.1111/j.1399-3054.2005.00558.x
26. Purushotham P, Cho SH, Díaz-Moreno SM, Kumar M, Nixon BT, Bulone V, et al. A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro. Proc Natl Acad Sci 2016;113:11360–5. doi: 10.1073/pnas.1606210113 27647898
27. Morgan JLW, Strumillo J, Zimmer J. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 2013;493:181–6. doi: 10.1038/nature11744 23222542
28. Morgan JLW, McNamara JT, Fischer M, Rich J, Chen H-M, Withers SG, et al. Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 2016;531:329–34. doi: 10.1038/nature16966 26958837
29. Morgan JLW, McNamara JT, Zimmer J. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 2014;21:489–96. doi: 10.1038/nsmb.2803 24704788
30. Yang H, Zimmer J, Yingling YG, Kubicki JD. How Cellulose Elongates—a QM/MM Study of the Molecular Mechanism of Cellulose Polymerization in Bacterial CESA. J Phys Chem B 2015;119:6525–35. doi: 10.1021/acs.jpcb.5b01433 25942604
31. Jobling SA. Membrane pore architecture of the CslF6 protein controls (1–3,1–4)- -glucan structure. Sci Adv 2015;1:e1500069–e1500069. doi: 10.1126/sciadv.1500069 26601199
32. McNamara JT, Morgan JLW, Zimmer J. A Molecular Description of Cellulose Biosynthesis. Annu Rev Biochem 2015;84:895–921. doi: 10.1146/annurev-biochem-060614-033930 26034894
33. Fincher GB. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol 2009;149:27–37. doi: 10.1104/pp.108.130096 19126692
34. Hazen SP, Scott-Craig JS, Walton JD. Cellulose Synthase-Like Genes of Rice. Plant Physiol 2002;128:336–40. doi: 10.1104/pp.010875 11842136
35. Olek AT, Rayon C, Makowski L, Kim HR, Ciesielski P, Badger J, et al. The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers. Plant Cell 2014;26:2996–3009. doi: 10.1105/tpc.114.126862 25012190
36. Sethaphong L, Davis JK, Slabaugh E, Singh A, Haigler CH, Yingling YG. Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis. Cellulose 2016;23:145–61. doi: 10.1007/s10570-015-0789-6
37. Vandavasi VG, Putnam DK, Zhang Q, Petridis L, Heller WT, Nixon BT, et al. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers. Plant Physiol 2016;170:123–35. doi: 10.1104/pp.15.01356 26556795
38. Hrmova M, Stone B a., Fincher GB. High-yield production, refolding and a molecular modelling of the catalytic module of (1,3)-β-D-glucan (curdlan) synthase from Agrobacterium sp. Glycoconj J 2010;27:461–76. doi: 10.1007/s10719-010-9291-4 20473714
39. May JF, Levengood MR, Splain R a, Brown CD, Kiessling LL. A processive carbohydrate polymerase that mediates bifunctional catalysis using a single active site. Biochemistry 2012;51:1148–59. doi: 10.1021/bi201820p 22217153
40. Nixon BT, Mansouri K, Singh A, Du J, Davis JK, Lee J, et al. Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex. Sci Rep 2016;6:28696. doi: 10.1038/srep28696 27345599
41. Li Y, Yang T, Dai D, Hu Y, Guo X, Guo H. Evolution, gene expression profiling and 3D modeling of CSLD proteins in cotton. BMC Plant Biol 2017;17:119–37. doi: 10.1186/s12870-017-1063-x 28693426
42. Slabaugh E, Sethaphong L, Xiao C, Amick J, Anderson CT, Haigler CH, et al. Computational and genetic evidence that different structural conformations of a non-catalytic region affect the function of plant cellulose synthase. J Exp Bot 2014;65:6645–53. doi: 10.1093/jxb/eru383 25262226
43. Karnezis T, Epa VC, Stone B a., Stanisich V a. Topological characterization of an inner membrane (1→3)-β-D-glucan (curdlan) synthase from Agrobacterium sp. strain ATCC31749. Glycobiology 2003;13:693–706. doi: 10.1093/glycob/cwg093 12851288
44. Shafee T, Gatti-Lafranconi P, Minter R, Hollfelder F. Handicap-Recover Evolution Leads to a Chemically Versatile, Nucleophile-Permissive Protease. ChemBioChem 2015;16:1866–9. doi: 10.1002/cbic.201500295 26097079
45. Jack BR, Meyer AG, Echave J, Wilke CO. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes. PLoS Biol 2016;14:1–23. doi: 10.1371/journal.pbio.1002452 27138088
46. Bi Y, Hubbard C, Purushotham P, Zimmer J. Insights into the structure and function of membrane-integrated processive glycosyltransferases. Curr Opin Struct Biol 2015;34:78–86. doi: 10.1016/j.sbi.2015.07.008 26342143
47. Christen M, Christen B, Allan MG, Folcher M, Jenö P, Grzesiek S, et al. DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc Natl Acad Sci 2007;104:4112–7. doi: 10.1073/pnas.0607738104 17360486
48. Ryjenkov DA, Simm R, Römling U, Gomelsky M. The PilZ domain is a receptor for the second messenger c-di-GMP: The PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 2006;281:30310–4. doi: 10.1074/jbc.C600179200 16920715
49. Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 2007;65:876–95. doi: 10.1111/j.1365-2958.2007.05817.x 17645452
50. Koehler Leman J, Ulmschneider MB, Gray JJ. Computational modeling of membrane proteins. Proteins Struct Funct Bioinforma 2015;83:1–24. doi: 10.1002/prot.24703 25355688
51. Hubbard RE, Kamran Haider M. Hydrogen Bonds in Proteins: Role and Strength. Encycl. Life Sci., Chichester, UK: John Wiley & Sons, Ltd; 2010. doi: 10.1002/9780470015902.a0003011.pub2
52. Mazeau K, Heux L. Molecular Dynamics Simulations of Bulk Native Crystalline and Amorphous Structures of Cellulose. J Phys Chem B 2003;107:2394–403. doi: 10.1021/jp0219395
53. Okobira T, Miyoshi K, Uezu K, Sakurai K, Shinkai S. Molecular dynamics studies of side chain effect on the beta-1,3-D-glucan triple helix in aqueous solution. Biomacromolecules 2008;9:783–8. doi: 10.1021/bm700511d 18257529
54. Bluhm TL, Sarko A. The triple helical structure of lentinan, a linear β-(1→3)-D-glucan. Can J Chem 1977;55:293–9. doi: 10.1139/v77-044
55. Pereira CS, Kony D, Baron R, Müller M, van Gunsteren WF, Hünenberger PH. Conformational and dynamical properties of disaccharides in water: a molecular dynamics study. Biophys J 2006;90:4337–44. doi: 10.1529/biophysj.106.081539 16581848
56. Christensen NJ, Hansen PI, Larsen FH, Folkerman T, Motawia MS, Engelsen SB. A combined nuclear magnetic resonance and molecular dynamics study of the two structural motifs for mixed-linkage β-glucans: methyl β-cellobioside and methyl β-laminarabioside. Carbohydr Res 2010;345:474–86. doi: 10.1016/j.carres.2009.12.009 20079487
57. Dimitroff G, Little A, Lahnstein J, Schwerdt JG, Srivastava V, Bulone V, et al. (1,3;1,4)-β-Glucan Biosynthesis by the CSLF6 Enzyme: Position and Flexibility of Catalytic Residues Influence Product Fine Structure. Biochemistry 2016;55:2054–61. doi: 10.1021/acs.biochem.5b01384 26967377
58. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, et al. Protein 3D structure computed from evolutionary sequence variation. PLoS One 2011;6. doi: 10.1371/journal.pone.0028766 22163331
59. Hopf TA, Colwell LJ, Sheridan R, Rost B, Sander C, Marks DS. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 2012;149:1607–21. doi: 10.1016/j.cell.2012.04.012 22579045
60. Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E, Ramos JE, et al. The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 2007;26:5153–66. doi: 10.1038/sj.emboj.7601918 18034161
61. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012;28:1647–9. doi: 10.1093/bioinformatics/bts199 22543367
62. Crooks G, Hon G, Chandonia J, Brenner S. WebLogo: a sequence logo generator. Genome Res 2004;14:1188–90. doi: 10.1101/gr.849004 15173120
63. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–7. doi: 10.1093/nar/gkh340 15034147
64. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016;33:1870–4. doi: 10.1093/molbev/msw054 27004904
65. Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods 2017;14:587–9. doi: 10.1038/nmeth.4285 28481363
66. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008;25:1307–20. doi: 10.1093/molbev/msn067 18367465
67. Floden EW, Tommaso PD, Chatzou M, Magis C, Notredame C, Chang JM. PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases. Nucleic Acids Res 2016;44:W339–43. doi: 10.1093/nar/gkw300 27106060
68. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, et al. Template-based protein structure modeling using the RaptorX web server. Nat Protoc 2012;7:1511–22. doi: 10.1038/nprot.2012.085 22814390
69. Simons KT, Kooperberg C, Huang E, Baker D. Assembly of Protein Tertiary Structures from Fragments with Similar Local Sequences using Simulated Annealing and Bayseian Scoring Functions. J Mol Biol 1997;268:209–25. doi: 10.1006/jmbi.1997.0959 9149153
70. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 2004;32:526–31. doi: 10.1093/nar/gkh468 15215442
71. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods 2015;12:7–8. doi: 10.1038/nmeth.3213 25549265
72. Šali A, Blundell TL. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J Mol Biol 1993;234:779–815. doi: 10.1006/jmbi.1993.1626 8254673
73. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2006;22:195–201. doi: 10.1093/bioinformatics/bti770 16301204
74. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10:845–58. doi: 10.1038/nprot.2015.053 25950237
75. Söding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 2005;33:244–8. doi: 10.1093/nar/gki162
76. Cole C, Barber JD, Barton GJ. The Jpred 3 secondary structure prediction server. Nucleic Acids Res 2008;36:197–201. doi: 10.1093/nar/gkn238 18463136
77. Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999;292:195–202. doi: 10.1006/jmbi.1999.3091 10493868
78. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D Biol Crystallogr 2010;66:12–21. doi: 10.1107/S0907444909042073 20057044
79. Humphrey W, Dalke A, Schulten K. VMD: Visual Molecular Dynamics. J Mol Graph 1996;14:33–8. 8744570
80. Furt F, Simon-Plas F, Mongrand S. Lipids of the Plant Plasma Membrane. In: Murphy AS, Schulz B, Peer W, editors. Plant Plasma Membr., Berlin, Heidelberg: Springer Berlin Heidelberg; 2011, p. 3–30. doi: 10.1007/978-3-642-13431-9_1
81. Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2016;40:133–59. doi: 10.1093/femsre/fuv008 25862689
82. Kuttel MM, Ståhle J, Widmalm G. CarbBuilder: Software for building molecular models of complex oligo- and polysaccharide structures. J Comput Chem 2016;37:2098–105. doi: 10.1002/jcc.24428 27317625
83. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem 2005;26:1781–802. doi: 10.1002/jcc.20289 16222654
84. Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, et al. Additive Empirical Force Field for Hexopyranose Monosaccharides. J Comput Chem 2008;29:2543–64. doi: 10.1002/jcc.21004 18470966
85. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 2010;114:7830–43. doi: 10.1021/jp101759q 20496934
86. Mackerell AD, Feig M, Brooks CL. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 2004;25:1400–15. doi: 10.1002/jcc.20065 15185334
87. Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J Chem Phys 1993;98:10089. doi: 10.1063/1.464397
88. Miyamoto S, Kollman PA. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 1992;13:952–62. doi: 10.1002/jcc.540130805
89. Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1977;23:327–41. doi: 10.1016/0021-9991(77)90098-5
90. Pravda L, Sehnal D, Toušek D, Navrátilová V, Bazgier V, Berka K, et al. MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res 2018;46:W368–W373. doi: 10.1093/nar/gky309 29718451
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy