Suppression treatment differentially influences the microbial community and the occurrence of broad host range plasmids in the rhizosphere of the model cover crop Avena sativa L.
Autoři:
Marco Allegrini aff001; Elena del V. Gomez aff001; Kornelia Smalla aff002; María Celina Zabaloy aff003
Působiště autorů:
Laboratorio de Biodiversidad Vegetal y Microbiana, Campo Experimental J. Villarino, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR CONICET-UNR), Universidad Nacional de Rosario, Zavalla, Argentina
aff001; Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants (JKI), Julius Kühn-Institut, Braunschweig, Germany
aff002; Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
aff003; Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223600
Souhrn
Cover crop suppression with glyphosate-based herbicides (GBHs) represents a common agricultural practice. The objective of this study was to compare rhizospheric microbial communities of A. sativa plants treated with a GBH relative to the mechanical suppression (mowing) in order to assess their differences and the potential implications for soil processes. Samples were obtained at 4, 10, 17 and 26 days post-suppression. Soil catabolic profiling and DNA-based methods were applied. At 26 days, higher respiration responses and functional diversity indices (Shannon index and catabolic evenness) were observed under glyphosate suppression and a neat separation of catabolic profiles was detected in multivariate analysis. Sarcosine and Tween 20 showed the highest contribution to this separation. Metabarcoding revealed a non-significant effect of suppression method on either alpha-diversity metrics or beta-diversity. Conversely, differences were detected in the relative abundance of specific bacterial taxa. Mesorhizobium sequences were detected in higher relative abundance in glyphosate-treated plants at the end of the experiment while the opposite trend was observed for Gaiella. Quantitative PCR of amoA gene from ammonia-oxidizing archaea showed a lower abundance under GBH suppression again at 26 days, while ammonia-oxidizing bacteria remained lower at all sampling times. Broad host range plasmids IncP-1β and IncP-1ε were exclusively detected in the rhizosphere of glyphosate-treated plants at 10 days and at 26 days, respectively. Overall, our study demonstrates differential effects of suppression methods on the abundance of specific bacterial taxa, on the physiology and mobile genetic elements of microbial communities while no differences were detected in taxonomic diversity.
Klíčová slova:
Actinobacteria – Archaea – Bacteria – Community structure – Polymerase chain reaction – Rhizosphere – Shannon index – Bacterial taxonomy
Zdroje
1. Lu YC, Watkins KB, Teasdale JR, Abdul−Baki AA. Cover crop in sustainable food production. Food Rev Int. 2000; 16: 121–157.
2. Chavarría DN, Verdenelli RA, Muñoz EJ, Conforto C, Restovich SB, Andriulo AE, et al. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems. Span J Agric Res. 2016; 14(2): e0304.
3. Carfagno P, Eiza M, Babinec F, Quiroga A. Inclusión de cultivos de cobertura en la dinámica hídrica de hapludoles y haplustoles del oeste de la provincia de Buenos Aires y noreste de La Pampa. In: Álvarez C, Quiroga A, Santos D, Bodrero M, editors. Contribución de los cultivos de cobertura a la sustentabilidad de los sistemas de producción. Ediciones INTA; 2012. pp. 36–49.
4. Coupland D, Caseley JC. Presence of 14C activity in root exudates and guttation fluid from Agropyron repens treated with 14C−labeled glyphosate. New Phytol. 1979; 83: 17–22.
5. Rodrigues JJV, Worsham AD, Corbin FT. Exudation of glyphosate from wheat (Triticum aestivum) plants and its effects on interplanted corn (Zea mays) and soybeans (Glycine max). Weed Sci. 1982; 30(3): 316–320.
6. Kremer RJ, Means NE, Kim S. Glyphosate affects soybean root exudation and rhizosphere micro−organisms. Int J Environ Anal Chem. 2005; 85: 1165–1174.
7. Tesfamariam T, Bott S, Neumann G, Cakmak I, Römheld V. Glyphosate in the rhizosphere−role of waiting time and different glyphosate binding forms in soils for phytotoxicity to non−target plants. Eur J Agron. 2009; 31: 126–132.
8. Laitinen P, Rämö S, Siimes K. Glyphosate translocation from plants to soil − does this constitute a significant proportion of residues in soil? Plant Soil. 2007; 300: 51–60.
9. Liu L, Punja ZK, Rahe JE. Altered root exudation and suppression of induced lignification as mechanisms of predisposition by glyphosate of bean roots (Phaseolus vulgaris L.) to colonization by Pythium spp. Physiol Mol Plant Pathol. 1997; 51: 111–127.
10. Imparato V, Santos SS, Johansen A, Geisenb S, Winding A. Stimulation of bacteria and protists in rhizosphere of glyphosate−treated barley. Appl Soil Ecol. 2016; 98: 47–55.
11. Clayton SJ, Clegg CD, Murray PJ, Gregory PJ. Determination of the impact of continuous defoliation of Lolium perenne and Trifolium repens on bacterial and fungal community structure in rhizosphere soil. Biol Fert Soils. 2005; 41: 109–115.
12. Mijangos I, Becerril JM, Albizu I, Epelde L, Garbisu C. Effects of glyphosate on rhizosphere soil microbial communities under two different plant compositions by cultivation−dependent and −independent methodologies. Soil Biol Biochem. 2009; 41: 505–513.
13. van Elsas JD, Turner S, Bailey MJ. Horizontal gene transfer in the phytosphere. New Phytol. 2003; 157: 525–537.
14. Heuer H, Smalla K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev. 2012; 36: 1083–1104. doi: 10.1111/j.1574-6976.2012.00337.x 22393901
15. Dunon VSK, Bers K, Lavigne R, Smalla K, Springael D. High prevalence of IncP−1 plasmids and IS1071 insertion sequences in on−farm biopurification systems and other pesticide polluted environments. FEMS Microbiol Ecol. 2013; 86(3): 415–431. doi: 10.1111/1574-6941.12173 23802695
16. Blau K, Bettermann A, Jechalke S, Fornefeld E, Vanrobaeys Y, Stalder T, et al. The transferable resistome of produce. mBio. 2018; 9: e01300–18. doi: 10.1128/mBio.01300-18 30401772
17. Anderson TH. Microbial eco−physiological indicators to assess soil quality. Agr Ecosyst Environ. 2003; 98: 285–293.
18. Martino DL. El herbicida glifosato: su manejo más allá de la dosis por hectárea. INIA Serie Técnica; 61. In: Unidad de Difusión e Información Tecnológica del INIA (Ed.). INIA, Montevideo; 1995. pp. 8–11.
19. Yanai RD, Majdi H, Park BB. Measured and modeled differences in nutrient concentrations between rhizosphere and bulk soil in a Norway spruce stand. Plant Soil. 2003; 257: 133–142.
20. Arango L, Buddrus−Schiemann K, Opelt K, Lueders T, Haesler F, Schmid M, et al. Effects of glyphosate on the bacterial community associated with roots of transgenic Roundup Ready® soybean. Eur J Soil Biol. 2014; 63: 41–48.
21. Egle K, Römer W, Keller H. Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply. Agronomie. 2003; 23: 511–518.
22. Wodnicka M, Guarino RD, Hemperly JJ, Thomas MR, Stitt D, Pitner JB. Novel fluorescent technology platform for high throughput cytotoxicity and proliferation assays. J Biom Screen. 2000; 5: 141–152.
23. Scott MJ, Jones MN. The biodegradation of surfactants in the environment. Biochim Biophys Acta. 2000; 1508: 235–251. doi: 10.1016/s0304-4157(00)00013-7 11090828
24. Krogh KA, Halling Sørensen B, Mogensen BB, Vejrup KV. Environmental properties and effects of non−ionic surfactant adjuvants in pesticides: a review. Chemosphere. 2003; 50: 871–901. doi: 10.1016/s0045-6535(02)00648-3 12504127
25. Zabaloy MC, Gomez E, Garland JL, Birmele M, Gómez MA. Assessment of microbial community function and structure in soil microcosms exposed to glyphosate. Appl Soil Ecol. 2012; 61: 333–339.
26. Allegrini M, Gomez E, Zabaloy MC. Repeated glyphosate exposure induces shifts in nitrifying communities and metabolism of phenylpropanoids. Soil Biol Biochem. 2017; 105: 206–215.
27. Zabaloy MC, Garland JL, Gómez MA. Assessment of the impact of 2,4−dichlorophenoxyacetic acid (2,4−D) on indigenous herbicide−degrading bacteria and microbial community function in an agricultural soil. Appl Soil Ecol. 2010; 46: 240–246.
28. Horwath WR, Paul EA. Microbial Biomass. In: Angle S, Weaver R, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A, editors. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. SSSA, Madison, WI; 1994. pp. 753–773.
29. Cheng W, Zhang Q, Coleman DC, Carroll CR, Hoffman CA. Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol Biochem. 1996; 28(10): 1283–1288.
30. Degens BP, Schippe LA, Sparling GP, Duncan LC. Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem. 2001; 33: 1143–1153.
31. Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA. Bacterial tag−encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella−infected pigs. Foodborne Pathog Dis. 2008; 5: 459–472. doi: 10.1089/fpd.2008.0107 18713063
32. Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters W.A et al. The under−recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem. 2011; 43: 1450–1455. doi: 10.1016/j.soilbio.2011.03.012 22267877
33. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26: 2460–2461. doi: 10.1093/bioinformatics/btq461 20709691
34. Swanson KS, Dowd SE, Suchodolski JS, Middelbos IS, Vester BM, Barry KA, et al. Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J. 2011; 5: 639–649. doi: 10.1038/ismej.2010.162 20962874
35. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018 [Cited October 2018]. Available from: https://www.R-project.org.
36. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13: 581–583. doi: 10.1038/nmeth.3869 27214047
37. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007; 73: 5261–5267. doi: 10.1128/AEM.00062-07 17586664
38. Peet R. The measurement of species diversity. Annu Rev Ecol Evol Syst. 1974; 5: 285–307.
39. Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014; 30: 3123–3124. doi: 10.1093/bioinformatics/btu494 25061070
40. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, et al. Archaea predominate among ammonia−oxidizing prokaryotes in soils. Nature. 2006; 442: 806–809. doi: 10.1038/nature04983 16915287
41. Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele−Bruhn S, et al. Dynamics and functional relevance of ammonia−oxidizing archaea in two agricultural soils. Environ Microbiol. 2009; 11: 446–456. doi: 10.1111/j.1462-2920.2008.01783.x 19196275
42. Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine−scale analysis of natural ammonia−oxidizing populations. Appl Environ Microbiol. 1997; 63: 4704–4712. 9406389
43. Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon−specific quantitative PCR assays. Appl Environ Microbiol. 2005; 71: 4117–4120. doi: 10.1128/AEM.71.7.4117-4120.2005 16000830
44. Pfeiffer S, Pastar M, Mitter B, Lippert K, Hackl E, Lojan P, et al. Improved group−specific primers based on the full SILVA 16S rRNA gene reference database. Environ Microbiol. 2014; 16: 2389–2407. 25229098
45. Hoshino YT, Morimoto S, Hayatsu M, Nagaoka K, Suzuki C, Karasawa T, et al. Effect of soil type and fertilizer management on archaeal community in upland field soils. Microbes Environ. 2011; 26(4): 307–316. doi: 10.1264/jsme2.me11131 21670564
46. Ouyang Y, Norton JM, Stark JM, Reeve JR, Habteselassie MY. Ammonia oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol Biochem. 2016; 96: 4–15.
47. Zabaloy MC, Allegrini M, Tebbe DA, Schuster K, Gomez E. Nitrifying bacteria and archaea withstanding glyphosate in fertilized soil microcosms. Appl Soil Ecol. 2017; 117−118: 88–95.
48. Jechalke S, Dealtry S, Smalla K, Heuer H. Quantification of IncP−1 plasmid prevalence in environmental samples. Appl Environ Microbiol. 2013; 79: 1410–1413. doi: 10.1128/AEM.03728-12 23241977
49. Bahl MI, Burmølle M, Meisner A, Hansen LH, Sørensen SJ. All IncP−1 plasmid subgroups, including the novel ε subgroup, are prevalent in the influent of a Danish wastewater treatment plant. Plasmid. 2009; 62: 134–139. doi: 10.1016/j.plasmid.2009.05.004 19501117
50. Littell RC, Stroup WW, Freund RJ. Analysis of Variance for Balanced Data. In: SAS Institute (Ed). SAS for Linear Models, Fourth Edition. Wiley Series in Probability and Statistics; 2002. pp. 87–88.
51. Lê S, Josse J, Husson F. FactoMineR: An R Package for Multivariate Analysis. J Stat Softw. 2008; 25: 1–18.
52. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 2016.
53. Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.5; 2017 [Cited April 2018]. https://CRAN.R-project.org/package=factoextra.
54. Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007; 62: 142–160. doi: 10.1111/j.1574-6941.2007.00375.x 17892477
55. Anderson MJ. A new method for non−parametric multivariate analysis of variance. Austral Ecol. 2001, 26: 32–46.
56. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. R package version 2.5–2. 2018 [Cited October 2018]. Available from: https://CRAN.R-project.org/package=vegan.
57. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004, 20: 289–290. doi: 10.1093/bioinformatics/btg412 14734327
58. Schliep KP. Phangorn: phylogenetic analysis in R. Bioinformatics. 2011; 27: 592–593. doi: 10.1093/bioinformatics/btq706 21169378
59. Chen J. GUniFrac: Generalized UniFrac Distances. R package version 1.1; 2018 [Cited October 2018]. Available from: https://CRAN.R-project.org/package=GUniFrac.
60. White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009; 5: e1000352. doi: 10.1371/journal.pcbi.1000352 19360128
61. Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics. 2010; 26: 715–721. doi: 10.1093/bioinformatics/btq041 20130030
62. Hove−Jensen B, Zechel DL, Jochimsena B. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon−Phosphorus Lyase. Microbiol Mol Biol Rev. 2014; 78: 176–197. doi: 10.1128/MMBR.00040-13 24600043
63. Krogh KA, Halling Sørensen B, Mogensen BB, Vejrup KV. Environmental properties and effects of non−ionic surfactant adjuvants in pesticides: a review. Chemosphere. 2003; 50: 871–901. doi: 10.1016/s0045-6535(02)00648-3 12504127
64. Sihtmäe M, Blinova I, Künnis−Beres K, Kanarbik L, Heinlaan M, Kahru A. Ecotoxicological effects of different glyphosate formulations. Appl Soil Ecol. 2013; 72: 215–224.
65. Druille M, Cabello MN, Omacini M, Golluscio RA. Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi. Appl Soil Ecol. 2013; 64: 99–103.
66. Zobiole L, Kremer R, Oliveira R, Constantin J. Glyphosate affects microorganisms in rhizospheres of glyphosate-resistant soybeans. J Appl Microbiol. 2011; 110: 118–127. doi: 10.1111/j.1365-2672.2010.04864.x 20880215
67. Raymann K, Moeller AH, Goodman AL, Ochman H. Unexplored archaeal diversity in the Great Ape Gut Microbiome. mSphere. 2017; 2: e00026–17. doi: 10.1128/mSphere.00026-17 28251182
68. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012; 6: 1007–1017. doi: 10.1038/ismej.2011.159 22134642
69. Newman MM, Hoilett N, Lorenz N, Dick RP, Liles MR, Ramsier C, et al. Glyphosate effects on soil rhizosphere−associated bacterial communities. Sci Total Environ. 2016; 543(Pt A): 155–160. doi: 10.1016/j.scitotenv.2015.11.008 26580738
70. Boyle TP, Smillie GM, Anderson J, Beeson DR. A Sensitivity Analysis of Nine Diversity and Seven Similarity Indices. J Water Pollut Control Fed. 1990; 62(6): 749–762.
71. Senechkin IV, Speksnijder AGCL, Semenov AM, van Bruggen AHC, van Overbeek LS. Isolation and Partial Characterization of Bacterial Strains on Low Organic Carbon Medium from Soils Fertilized with Different Organic Amendments. Microb Ecol. 2010; 60: 829–839. doi: 10.1007/s00248-010-9670-1 20422409
72. DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK. Selective progressive response of soil microbial community to wild oat roots. ISME J. 2009; 3: 168–178. doi: 10.1038/ismej.2008.103 19005498
73. Vandenkoornhuyse P, Mahe S, Ineson P, Staddon P. Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc Natl Acad Sci USA. 2007; 104: 16970–16975. doi: 10.1073/pnas.0705902104 17939995
74. Lancaster SH, Hollister EB, Senseman SA, Gentry TJ. Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Manag Sci. 2010; 66: 59–64. doi: 10.1002/ps.1831 19697445
75. Feld L, Hjelmsø MH, Nielsen MS, Jacobsen AD, Rønn R, Ekelund F, et al. Pesticide side effects in an agricultural soil ecosystem as measured by amoA expression quantification and bacterial diversity changes. PLoS ONE. 2015; 10(5): e0126080. doi: 10.1371/journal.pone.0126080 25938467
76. Zhang M, Wang W, Tang L, Heenan M, Xu Z. Effects of nitrification inhibitor and herbicides on nitrification, nitrite and nitrate consumptions and nitrous oxide emission in an Australian sugarcane soil. Biol Fert Soils. 2018; 54: 697–706.
77. Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL, et al. Suppression of soil nitrification by plants. Plant Sci. 2015; 233: 155–164. doi: 10.1016/j.plantsci.2015.01.012 25711823
78. Carey CJ, Dove NC, Beman JM, Hart SC, Aronson EL. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biol Biochem. 2016; 99: 158–166.
79. Barriuso J, Marín S, Mellado RP. Effect of the herbicide glyphosate on glyphosate-tolerant maize rhizobacterial communities: a comparison with pre-emergency applied herbicide consisting of a combination of acetochlor and terbuthylazine. Environ Microbiol. 2010; 12: 1021–1030. doi: 10.1111/j.1462-2920.2009.02146.x 20105215
80. Hermans SM, Buckley HL, Case BS, Curran-Cournane F, Taylor M, Lear G. Bacteria as emerging indicators of soil condition. Appl Environ Microbiol. 2017; 83: e02826–16. doi: 10.1128/AEM.02826-16 27793827
81. Jenkins M, Locke M, Reddy K, McChesney DS, Steinriede R. Glyphosate Applications, Glyphosate Resistant Corn, and Tillage on Nitrification Rates and Distribution of Nitrifying Microbial Communities. Soil Sci Soc Am J. 2018; 81: 1371–1380.
82. Dealtry S, Holmsgaard PN, Dunon V, Jechalke S, Ding G-C, Krögerrecklenfort E, et al. Shifts in abundance and diversity of mobile genetic elements to diverse pesticides introduced into an on−farm biopurification system over a year. Appl Environ Microbiol. 2014; 80: 4012–4020. doi: 10.1128/AEM.04016-13 24771027
83. Top EM, Holben WE, Forney LJ. Characterization of diverse 2,4−dichlorophenoxyacetic acid−degradative plasmids isolated from soil by complementation. Appl Environ Microbiol. 1995; 61: 1691–1698. 7646006
84. Martinez B, Tomkins J, Wackett R, Wing R, Sadowsky MJ. Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP−1 from Pseudomonas sp. strain ADP. J Bacteriol. 2001; 183: 5684–5697. doi: 10.1128/JB.183.19.5684-5697.2001 11544232
85. Huang J, Su Z, Xu Y. The evolution of microbial phosphonate degradative pathways. J Mol Evol. 2005, 61: 682–690. doi: 10.1007/s00239-004-0349-4 16245012
86. Heuer H, Binh CTT, Jechalke S, Kopmann C, Zimmerling U, Krögerrecklenfort E, et al. IncP−1ε plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Front Microbiol. 2012; 3: 1–8.
87. Mølbak L, Molin S, Kroer N. Root growth and exudate production define the frequency of horizontal plasmid transfer in the rhizosphere. FEMS Microbiol Ecol. 2007; 59: 167–176.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy