Optimal seismic retrofitting techniques for URM school buildings located in the southwestern Iberian peninsula
Autoři:
María-Luisa Segovia-Verjel aff001; María-Victoria Requena-García-Cruz aff001; Enrique de-Justo-Moscardó aff001; Antonio Morales-Esteban aff001
Působiště autorů:
Department of Building Structures and Geotechnical Engineering, University of Seville, Seville, Spain
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223491
Souhrn
This paper aims to study different seismic retrofitting techniques to test the reduction of the seismic vulnerability of unreinforced masonry buildings. Three techniques have been considered in a case study: adding steel or carbon fibre reinforced polymer grids in the walls and steel encirclements in the openings. The performance-based method has been used to that purpose. Nonlinear static analyses have been performed to obtain the capacity and fragility curves, the performance point and the damage level states. Moreover, an analysis of the cost-benefit ratio has been carried out. Results have shown that the three techniques have produced considerable improvements. The addition of encirclements has reduced the deformation resulting in a slight increase of the structure’s stiffness. Adding steel grids has produced the maximum peak strength increase while adding polymer grids has produced the largest ultimate displacements. Adding encirclement has had the best cost-benefit ratio.
Klíčová slova:
Cements – Deformation – Mechanical properties – Schools – Steel – Stiffness – Carbon fiber – Concrete
Zdroje
1. Lamego P, Lourenço PB, Sousa ML, Marques R. Seismic vulnerability and risk analysis of the old building stock at urban scale: application to a neighbourhood in Lisbon. Bull Earthq Eng. 2017;15: 2901–2937. doi: 10.1007/s10518-016-0072-8
2. Grünthal G. European Macroseismic Scale 1998 (EMS-98). Cahiers du Centre Européen de Géodynamique et de Séismologie 15. Centre Européen de Géodynamique et de Séismologie, Luxembourg. 1998.
3. Presidency of Goverment [Presidencia del Gobierno]. Seismic code PGS-1. Part A. [Norma sismorresistente PGS-1. Parte A]. State official newsletter [Boletín Oficial del Estado] 30 1968.
4. Spanish Ministry of Public Works [Ministerio de Fomento de España]. Spanish Seismic Construction Code of Buildings [Norma de Construcción Sismorresistente: Parte general y edificación (NSCE-02)]. Spain; 2002.
5. Blázquez Martínez R. Enfoque y avances conceptuales de la nueva norma española de construcción sismorresistente NCSE-94. Inf la Construcción. 2010;48: 39–45. doi: 10.3989/ic.1997.v48.i447.974
6. Requena-García-Cruz MV, Morales-Esteban A, Durand-Neyra P, Estêvão JMC. An index-based method for evaluating seismic retrofitting techniques. Application to a reinforced concrete primary school in Huelva. PLoS One. 2019;14: e0215120. doi: 10.1371/journal.pone.0215120 30970004
7. Estêvão J, Ferreira M, Morales-Esteban A, Martínez-Álvarez F, Fazendeiro Sá L, Requena-García-Cruz MV, et al. Earthquake resilient schools in Algarve (Portugal) and Huelva (Spain). 16th Eur Conf Earthq Eng. 2018; 1–11.
8. Galante R, Foa D. An Epidemiological Study of Psychic Trauma and Treatment Effectiveness for Children after a Natural Disaster. J Am Acad Child Psychiatry. 1986;25: 357–363. doi: 10.1016/S0002-7138(09)60257-0
9. Masten AS. Global Perspectives on Resilience in Children and Youth. Child Dev. 2014;85: 6–20. doi: 10.1111/cdev.12205 24341286
10. Amaro-Mellado JL, Morales-Esteban A, Martínez-Álvarez F. Mapping of seismic parameters of the Iberian Peninsula by means of a geographic information system. Cent Eur J Oper Res. 2017; doi: 10.1007/s10100-017-0506-7
11. Amaro-Mellado JL, Morales-Esteban A, Asencio-Cortés G, Martínez-Álvarez F. Comparing seismic parameters for different source zone models in the Iberian Peninsula. Tectonophysics. 2017;717: 449–472. doi: 10.1016/J.TECTO.2017.08.032
12. European Union. Eurocode-8: Design of structures for earthquake resistance. Part 3: Assessment and retrofitting of buildings. Brussels; 2005.
13. Magenes G, Penna A. Seismic Design and Assessment of Masonry Buildings in Europe: Recent Research and Code Development Issues. 9th Australas Mason Conf. 2011; 583–603.
14. Meireles HA, Bento R. Seismic assessment and retrofitting of Pombalino buildings by fragility curves. 15th World Conf Earthq Eng Lisbon Port. 2012;1: 1–10. doi: 10.12989/eas.2014.7.1.057
15. Maio R, Estêvão JMC, Ferreira TM, Vicente R. The seismic performance of stone masonry buildings in Faial island and the relevance of implementing effective seismic strengthening policies. Eng Struct. 2017;141: 41–58. doi: 10.1016/j.engstruct.2017.03.009
16. Abeling S, Dizhur D, Ingham J. An evaluation of successfully seismically retrofitted URM buildings in New Zealand and their relevance to Australia. 2018; doi: 10.1080/13287982.2018.1491820
17. L Fulop MS. Constructive and performance analysis of the retrofit systems for vertical masonry elements. 2010;
18. Kadam SB, Singh Y, Li B. Strengthening of unreinforced masonry using welded wire mesh and micro-concrete–Behaviour under in-plane action. Constr Build Mater. 2014;54: 247–257. doi: 10.1016/J.CONBUILDMAT.2013.12.033
19. Diz S, Costa A, Costa AA. Efficiency of strengthening techniques assessed for existing masonry buildings. Eng Struct. 2015;101: 205–215. doi: 10.1016/J.ENGSTRUCT.2015.07.017
20. Shabdin M, Attari NKA, Zargaran M. Experimental study on seismic behavior of Un-Reinforced Masonry (URM) brick walls strengthened with shotcrete. Bull Earthq Eng. 2018;16: 3931–3956. doi: 10.1007/s10518-018-0340-x
21. Dolce M, Ponzo FC, Di Croce M, Moroni C, Giordano F, Nigro D, et al. Experimental assessment of the CAM and DIS-CAM systems for the seismic upgrading of monumental masonry buildings. 2009; 1021–1027.
22. Spinella N. Push-over analysis of a rubble full-scale masonry wall reinforced with stainless steel ribbons. Bull Earthq Eng. 2019;17: 497–518. doi: 10.1007/s10518-018-0461-2
23. Proença J, Gago AS, Cardoso J, Cóias V, Paula R. Development of an innovative seismic strengthening technique for traditional load-bearing masonry walls. Bull Earthq Eng. 2012;10: 113–133. doi: 10.1007/s10518-010-9210-x
24. Martinelli E, Perri F, Sguazzo C, Faella C. Cyclic shear-compression tests on masonry walls strengthened with alternative configurations of CFRP strips. Bull Earthq Eng. 2016;14: 1695–1720. doi: 10.1007/s10518-016-9895-6
25. Turco V, Secondin S, Morbin A, Valluzzi MR, Modena C. Flexural and shear strengthening of un-reinforced masonry with FRP bars. Compos Sci Technol. 2006;66: 289–296. doi: 10.1016/J.COMPSCITECH.2005.04.042
26. Papanicolaou C, Triantafillou T, Lekka M. Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels. Constr Build Mater. 2011;25: 504–514. doi: 10.1016/J.CONBUILDMAT.2010.07.018
27. Faella C, Martinelli E, Nigro E, Paciello S. Shear capacity of masonry walls externally strengthened by a cement-based composite material: An experimental campaign. Constr Build Mater. 2010;24: 84–93. doi: 10.1016/J.CONBUILDMAT.2009.08.019
28. Capozucca R. Effects of mortar layers in the delamination of GFRP bonded to historic masonry. 2013; doi: 10.1016/j.compositesb.2012.02.012
29. Fathalla E, Salem H. Parametric Study on Seismic Rehabilitation of Masonry Buildings Using FRP Based upon 3D Non-Linear Dynamic Analysis. Buildings. 2018;8: 124. doi: 10.3390/buildings8090124
30. Parisi F, Augenti N. Seismic capacity of irregular unreinforced masonry walls with openings. Earthq Eng Struct Dyn. 2013;42: 101–121. doi: 10.1002/eqe.2195
31. Reyes JC, Yamin LE, Hassan WM, Sandoval JD, Gonzalez CD, Galvis FA. Shear behavior of adobe and rammed earth walls of heritage structures. Eng Struct. 2018;174: 526–537. doi: 10.1016/J.ENGSTRUCT.2018.07.061
32. Augenti N, Cosenza E, Dolce M, Manfredi G, Masi A, Samela L. Performance of school buildings during the 2002 Molise, Italy, earthquake. Earthq Spectra. 2004;20: 257–270. doi: 10.1193/1.1769374
33. Proença JM, Gago AS, Vilas Boas A. Structural window frame for in-plane seismic strengthening of masonry wall buildings. Int J Archit Herit. 2019;13: 98–113. doi: 10.1080/15583058.2018.1497234
34. European Union. Eurocode-6: Design of masonry structures. Part 1–1: General rules for reinforced and unreinforced masonry structures. Brussels; 2005.
35. Vivienda M de la. M. V. 201–1972, «Muros resistentes de fábrica de ladrillo». 1972;
36. Martínez JL, Martín-Caro JA, Leon J. Comportamiento mecánico de la obra de fábrica. E.T.S. Ingenieros de Caminos, Canales y Puertos. U.P.M; 2001.
37. Martín-Caro Álamo JA. Análisis estructural de puentes arco de fábrica: Criterios de comprobación. 2001.
38. NTC 2008. Decreto Ministeriale 14/1/2008. Norme tecniche per le costruzioni. Ministry of Infrastructures and Transportations. G.U. S.O. n.30 on 4/2/2008; 2008 [in Italian].
39. Government of Spain [Gobierno de España]. DB SE- AE: Structural safety, design loads. [Seguridad Estructural, Acciones en la Edificación]. State Off Newsl [Boletín Of del Estado]. 2009; 1–42.
40. Freeman SA. Review of the development of the capacity spectrum method. ISET J Earthq Technol. 2004;41: 113.
41. American Society of Civil Engineers (ASCE). FEMA 356 Prestandard and Commentary for the Seismic Rehabilitation of Building. Rehabilitation. 2000;
42. Freeman SA. The capacity spectrum method as a tool for seismic design. PROC 11TH Eur Conf Earthq Eng. 1998;
43. Calvi GM. A displacement-based approach for vulnerability evaluation of classes of buildings. J Earthq Eng. 1999;3: 411–438. doi: 10.1080/13632469909350353
44. Buildings RC. The n 2 method for the seismic damage analysis. Engineering. 2000;25: 31–46.
45. Jiménez Pacheco JC. Evaluación sísmica de edificios de mampostería no reforzada típicos de Barcelona: modelización y revisión de la aplicación del Método del Espectro de Capacidad. Universidad Politécnica de Cataluña. 2016.
46. Lagomarsino S, Cattari S. Seismic Performance of Historical Masonry Structures Through Pushover and Nonlinear Dynamic Analyses. Perspectives on European Earthquake Engineering and Seismology Vol 39. 2015. pp. 265–292. doi: 10.1007/978-3-319-16964-4_11
47. Spanish Ministry of Public Works [Ministerio de Fomento de España]. Update of the seismic hazard maps [Actualización de mapas de peligrosidad sísmica de España]. Spain; 2012.
48. Lagomarsino S, Penna A, Galasco A, Cattari S. TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Eng Struct. 2013;56: 1787–1799. doi: 10.1016/j.engstruct.2013.08.002
49. Quagliarini E, Maracchini G, Clementi F. Uses and limits of the Equivalent Frame Model on existing unreinforced masonry buildings for assessing their seismic risk: A review. J Build Eng. 2017;10: 166–182. doi: 10.1016/j.jobe.2017.03.004
50. Clementi F, Gazzani V, Poiani M, Lenci S. Assessment of seismic behaviour of heritage masonry buildings using numerical modelling. J Build Eng. 2016;8: 29–47. doi: 10.1016/j.jobe.2016.09.005
51. Haach VG, Vasconcelos G, Lourenço PB. Parametrical study of masonry walls subjected to in-plane loading through numerical modeling. Eng Struct. 2011;33: 1377–1389. doi: 10.1016/j.engstruct.2011.01.015
52. Petry S, Beyer K. Influence of boundary conditions and size effect on the drift capacity of URM walls. 2014; doi: 10.1016/j.engstruct.2014.01.048
53. Lagomarsino S, Magenes G. Evaluation and reduction of the vulnerability of masonry buildings. En: Manfredi G, Doce M, editores. The state of Earthquake Engineering Research in Italy. Italy: Doppiavoce; 2009. pp. 1–50.
54. Bonett R, Barbat AH, Pujades LG, Lagomarsino S, Penna A. Performance assessment for unreinforced masonry buildings in low seismic hazards areas. 13th World Conference on Earthquake Engineering. Canada; 2004.
55. Milutinovic Z V., Trendafiloski GS. An advanced approach to earthquake risk scenarios with applications to different European towns. WP4: Vulnerability assessment of lifelines and essential facilities. 2003.
56. Federal Emergency Management Agency (FEMA). HAZUS software [Internet]. 2018.
57. Lagomarsino S. On the vulnerability assessment of monumental buildings. Bull Earthq Eng. 2006;4: 445–463. doi: 10.1007/s10518-006-9025-y
58. Gonzalez-Drigo R, Avila-Haro JA, Barbat AH, Pujades LG, Vargas YF, Lagomarsino S, et al. Modernist Unreinforced Masonry (URM) Buildings of Barcelona: Seismic Vulnerability and Risk Assessment. Int J Archit Herit. 2015;9: 214–230. doi: 10.1080/15583058.2013.766779
59. Calvi GM, Pinho R. Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J Earthq Technol. 2006;43: 75–104.
60. Government of Andalusia. Construction Cost Basis of Andalusia (BCCA). 2017.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy