#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A localized sanitation status index as a proxy for fecal contamination in urban Maputo, Mozambique


Autoři: Drew Capone aff001;  Zaida Adriano aff002;  David Berendes aff004;  Oliver Cumming aff005;  Robert Dreibelbis aff005;  David A. Holcomb aff006;  Jackie Knee aff001;  Ian Ross aff005;  Joe Brown aff001
Působiště autorů: Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America aff001;  WE Consult, Maputo, Mozambique aff002;  Departamento de Geografia, Universidade Eduardo Mondlane, Maputo, Mozambique aff003;  Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America aff004;  Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom aff005;  Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America aff006
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224333

Souhrn

Sanitary surveys are used in low- and middle-income countries to assess water, sanitation, and hygiene conditions, but have rarely been compared with direct measures of environmental fecal contamination. We conducted a cross-sectional assessment of sanitary conditions and E. coli counts in soils and on surfaces of compounds (household clusters) in low-income neighborhoods of Maputo, Mozambique. We adapted the World Bank’s Urban Sanitation Status Index to implement a sanitary survey tool specifically for compounds: a Localized Sanitation Status Index (LSSI) ranging from zero (poor sanitary conditions) to one (better sanitary conditions) calculated from 20 variables that characterized local sanitary conditions. We measured the variation in the LSSI with E. coli counts in soil (nine locations/compound) and surface swabs (seven locations/compound) in 80 compounds to assess reliability. Multivariable regression indicated that a ten-percentage point increase in LSSI was associated with 0.05 (95% CI: 0.00, 0.11) log10 fewer E. coli/dry gram in courtyard soil. Overall, the LSSI may be associated with fecal contamination in compound soil; however, the differences detected may not be meaningful in terms of public health hazards.

Klíčová slova:

Bacterial pathogens – Chicken models – Chickens – Sanitation – Sunlight – Surveys – Urban environments – Ducks


Zdroje

1. UNICEF & WHO. Progresss on Drinking Water, Sanitation and Hygiene [Internet]. 2017. Available: http://www.who.int/mediacentre/news/releases/2017/launch-version-report-jmp-water-sanitation-hygiene.pdf

2. Wagner E, Lanoix J. Excreta disposal for rural areas and small communities. Monogr Ser World Heal Organ. 1958;39: 1–182.

3. World Health Organization. Guidelines on Sanitation and Health [Internet]. Geneva; 2018. Available: http://apps.who.int/iris/bitstream/handle/10665/274939/9789241514705-eng.pdf?ua=1

4. Pickering AJ, Julian TR, Marks SJ, Mattioli MC, Boehm AB, Schwab KJ, et al. Fecal contamination and diarrheal pathogens on surfaces and in soils among Tanzanian households with and without improved sanitation. Environ Sci Technol. 2012;46: 5736–5743. doi: 10.1021/es300022c 22545817

5. Mattioli MCM, Davis J, Boehm AB. Hand-to-mouth contacts result in greater ingestion of feces than dietary water consumption in Tanzania: A quantitative fecal exposure assessment model. Environ Sci Technol. 2015;49: 1912–1920. doi: 10.1021/es505555f 25559008

6. Penakalapati G, Swarthout J, Delahoy MJ, McAliley L, Wodnik B, Levy K, et al. Exposure to Animal Feces and Human Health: A Systematic Review and Proposed Research Priorities. Environ Sci Technol. 2017;51: 11537–11552. doi: 10.1021/acs.est.7b02811 28926696

7. Ngure FM, Humphrey JH, Mbuya MNN, Majo F, Mutasa K, Govha M, et al. Formative research on hygiene behaviors and geophagy among infants and young children and implications of exposure to fecal bacteria. Am J Trop Med Hyg. 2013;89: 709–716. doi: 10.4269/ajtmh.12-0568 24002485

8. Reid B, Orgle J, Roy K, Pongolani C, Chileshe M, Stoltzfus R. Characterizing potential risks of fecal–oral microbial transmission for infants and young children in Rural Zambia. Am J Trop Med Hyg. 2018;98: 816–823. doi: 10.4269/ajtmh.17-0124 29405109

9. Williams AR, Overbo A. Unsafe return of human excreta to the environment: a literature review. 2015.

10. Null C, Stewart CP, Pickering AJ, Dentz HN, Arnold BF, Arnold CD, et al. Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Kenya: a cluster-randomised controlled trial. Lancet Glob Heal. The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license; 2018;6: e316–e329. doi: 10.1016/S2214-109X(18)30005-6 29396219

11. Luby SP, Rahman M, Arnold BF, Unicomb L, Ashraf S, Winch PJ, et al. Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Bangladesh: a cluster randomised controlled trial. Lancet Glob Heal. 2018;6: e302–e315. doi: 10.1016/S2214-109X(17)30490-4 29396217

12. Prendergast AJ, Chasekwa B, Evans C, Mutasa K, Mbuya MNN, Stoltzfus RJ, et al. Independent and combined effects of improved water, sanitation, and hygiene, and improved complementary feeding, on stunting and anaemia among HIV-exposed children in rural Zimbabwe: a cluster-randomised controlled trial. Lancet Child Adolesc Heal. 2019;3: 77–90. doi: 10.1016/S2352-4642(18)30340-7 30573417

13. Wang Y, Moe CL, Null C, Raj SJ, Baker KK, Robb KA, et al. Multipathway quantitative assessment of exposure to fecal contamination for young children in low-income urban environments in Accra, Ghana: the Sanipath analytical approach. Am J Trop Med Hyg. 2017;97: 1009–1019. doi: 10.4269/ajtmh.16-0408 29031283

14. Robb K, Null C, Teunis P, Yakubu H, Armah G, Moe CL. Assessment of Fecal Exposure Pathways in Low-Income Urban Neighborhoods in Accra, Ghana: Rationale, Design, Methods, and Key Findings of the SaniPath Study. Am J Trop Med Hyg. 2017;97: 1020–1032. doi: 10.4269/ajtmh.16-0508 28722599

15. Ercumen A, Pickering AJ, Kwong LH, Mertens A, Arnold BF, Benjamin-Chung J, et al. Do Sanitation Improvements Reduce Fecal Contamination of Water, Hands, Food, Soil, and Flies? Evidence from a Cluster-Randomized Controlled Trial in Rural Bangladesh. Environ Sci Technol. 2018; doi: 10.1021/acs.est.8b02988 30256095

16. Baker KK, Senesac R, Sewell D, Sen Gupta A, Cumming O, Mumma J. Fecal Fingerprints of Enteric Pathogen Contamination in Public Environments of Kisumu, Kenya associated with Human Sanitation Conditions and Domestic Animals. Environ Sci Technol. 2018; acs.est.8b01528. doi: 10.1021/acs.est.8b01528 30106283

17. Pickering AJ, Ercumen A, Arnold BF, Kwong LH, Parvez SM, Alam M, et al. Fecal Indicator Bacteria along Multiple Environmental Transmission Pathways (Water, Hands, Food, Soil, Flies) and Subsequent Child Diarrhea in Rural Bangladesh. Environ Sci Technol. American Chemical Society; 2018;52: 7928–7936. doi: 10.1021/acs.est.8b00928 29902374

18. Exum NG, Olórtegui MP, Yori PP, Davis MF, Heaney CD, Kosek M, et al. Floors and Toilets: Association of Floors and Sanitation Practices with Fecal Contamination in Peruvian Amazon Peri-Urban Households. Environ Sci Technol. American Chemical Society; 2016;50: 7373–7381. doi: 10.1021/acs.est.6b01283 27338564

19. Stauber C, Walters A, de Aceituno A, Sobsey M, Stauber CE, Walters A, et al. Bacterial Contamination on Household Toys and Association with Water, Sanitation and Hygiene Conditions in Honduras. Int J Environ Res Public Health. Multidisciplinary Digital Publishing Institute; 2013;10: 1586–1597. doi: 10.3390/ijerph10041586 23598302

20. Eisenberg JNS, Trostle J, Sorensen RJD, Shields KF. Toward a Systems Approach to Enteric Pathogen Transmission: From Individual Independence to Community Interdependence. Annu Rev Public Health. Annual Reviews; 2012;33: 239–257. doi: 10.1146/annurev-publhealth-031811-124530 22224881

21. Campos LC, Ross P, Nasir ZA, Taylor H, Parkinson J. Development and application of a methodology to assess sanitary risks in Maputo, Mozambique. 2015;27: 371–388. doi: 10.1177/0956247815595784

22. Mehta M, Mehta D. City sanitation ladder: moving from household to citywide sanitation assessment. J Water, Sanit Hyg Dev. 2013;3: 481. doi: 10.2166/washdev.2013.134

23. Gunawardana IPP, Galagedara LW. A new approach to measure sanitation performance. J Water Sanit Hyg Dev. 2013;3: 269–282. doi: 10.2166/washdev.2013.046

24. Milroy CA. Evaluating sanitary quality and classifying urban sectors according to environmental conditions. Environ Urban. 2001;13: 235–255. doi: 10.1177/095624780101300117

25. Hawkins P, Muximpua O. Developing Business Models for Fecal Sludge Management in Maputo. Water Sanit Progr Rep. 2015; Available: https://www.wsp.org/sites/wsp.org/files/publications/WSP-Developing-Business-Models-for-Fecal-Sludge-Management-Maputo.pdf

26. Ercumen A, Naser AM, Arnold BF, Unicomb L, Jr JMC, Luby SP. Can Sanitary Inspection Surveys Predict Risk of Microbiological Contamination of Groundwater Sources? Evidence from Shallow Tubewells in Rural Bangladesh. 2017;96: 561–568. doi: 10.4269/ajtmh.16-0489 28115666

27. Rochelle-Newall E, Nguyen TMH, Le TPQ, Sengtaheuanghoung O, Ribolzi O. A short review of fecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps and future directions. Front Microbiol. 2015;6. doi: 10.3389/fmicb.2015.00006 25713560

28. Hanlon J. Mozambique News Reports & Clippings, number 400 [Internet]. Open University; 2018. Available: bit.ly/mozamb

29. van Esch MS, van Ramshorst JGV. The sewer system of urban Maputo [Internet]. 2014. Available: https://tinyurl.com/ya7eeo8u

30. Bauerl M, Arsénio AM, Muximpua O, Hawkins P. Emptying of sanitation facilities in Maputo, Mozambique. Assessment of Attitudes and Practices at a Household Level. 2016;

31. Brown J, Cumming O, Bartram J, Cairncross S, Ensink J, Holcomb D, et al. A controlled, before-and-after trial of an urban sanitation intervention to reduce enteric infections in children: research protocol for the Maputo Sanitation (MapSan) study, Mozambique. BMJ Open. 2015;5: e008215–e008215. doi: 10.1136/bmjopen-2015-008215 26088809

32. Un-Habitat. The Challenge of Slums—Global Report on Human Settlements [Internet]. Earthscan Publications on behalf of UN-Habitat. 2003. http://dx.doi.org/10.1108/meq.2004.15.3.337.3

33. UN-Habitat. The State of African Cities: Re-imagining sustainable urban transitions [Internet]. United Nations Human Settlements Programme, Nairobi. 2014. doi: 10.2174/97816080506351100101

34. Sitoe A, Breiman RF, Bassat Q. Child Mortality in Mozambique: a Review of Recent Trends and Attributable Causes. Curr Trop Med Reports. Current Tropical Medicine Reports; 2018;5: 125–132. doi: 10.1007/s40475-018-0156-4

35. Knee J, Sumner T, Adriano Z, Berendes D, de Bruijn E, Schmidt W-P, et al. Risk factors for childhood enteric infection in urban Maputo, Mozambique: A cross-sectional study. Mejia R, editor. PLoS Negl Trop Dis. 2018;12: e0006956. doi: 10.1371/journal.pntd.0006956 30419034

36. Jenkins MW, Freeman MC, Routray P. Measuring the safety of excreta disposal behavior in India with the new Safe San Index: reliability, validity and utility. Int J Environ Res Public Health. 2014;11: 8319–46. doi: 10.3390/ijerph110808319 25153464

37. Gallego-Ayala J, Muximpua O, Hawkins P. The Urban Sanitation Status Index: A Diagnostic Tool for Prioritizing Interventions. 2017.

38. OECD, European Union, Joint Research Centre—European Commission. Handbook on Constructing Composite Indicators: Methodology and User Guide [Internet]. 2008. Available: http://www.oecd.org/sdd/42495745.pdf

39. Tremolet S. Identifying the Potential for Results-Based Financing for Sanitation. Washington, DC: Water and Sanitation Program, The World Bank; 2011.

40. Hawkins P, Blackett I, Heymans C. Poor-Inclusive Sanitation: An Overview. Washington, DC: Water and Sanitation Program, The World Bank; 2013.

41. Exley JLR, Liseka B, Cumming O, Ensink JHJ. The sanitation ladder, what constitutes an improved form of sanitation? Environ Sci Technol. 2015;49: 1086–1094. doi: 10.1021/es503945x 25513885

42. Feachem RG, Bradley DJ, Hemda G, Mara DD. Sanitation and Disease: Health Aspects of Excreta and Waste-water Management. 1st ed. World Bank Studies in Water Supply and Sanitation. Chichester, West Sussex: John Wiley and Sons; 1983.

43. Baker KK, O’Reilly CE, Levine MM, Kotloff KL, Nataro JP, Ayers TL, et al. Sanitation and Hygiene-Specific Risk Factors for Moderate-to-Severe Diarrhea in Young Children in the Global Enteric Multicenter Study, 2007–2011: Case-Control Study. Tumwine JK, editor. PLOS Med. 2016;13: e1002010. doi: 10.1371/journal.pmed.1002010 27138888

44. Heijnen M, Cumming O, Peletz R, Chan GK-S, Brown J, Baker K, et al. Shared Sanitation versus Individual Household Latrines: A Systematic Review of Health Outcomes. Baradaran HR, editor. PLoS One. 2014;9: e93300. doi: 10.1371/journal.pone.0093300 24743336

45. Julius DS, Gunnerson CG, Mara DD. Appropriate Sanitation Alternatives: A Planning and Design Manual [Internet]. Baltimore: The John Hopkins University Press; 1982. Available: http://documents.worldbank.org/curated/en/701511468740361506/pdf/multi-page.pdf

46. Graham JP, Polizzotto ML. Pit Latrines and Their Impacts on Groundwater Quality: A Systematic Review. Environmnetal Heal Perspect. 2013;5: 521–530. doi: 10.1289/ehp.1206028 23518813

47. Brikke F, Bredero M. Sanitation. Linking technology choice with operation and maintenance in the context of community water suppply and sanitation. Geneva: World Health Organization; 2003. pp. 103–128.

48. Luby SP, Agboatwalla M, Feikin DR, Painter J, Billhimer W, Altaf A, et al. Effect of handwashing on child health: A randomised controlled trial. Lancet. 2005;366: 225–233. doi: 10.1016/S0140-6736(05)66912-7 16023513

49. Niwagaba CB, Mbeguere M, Strande L. Faecal Sludge Quantification, Characterisation and Treatment Objectives. Faecal Sludge Management. 2014. doi: 10.1017/CBO9781107415324.004

50. Peal A, Evans B, Blackett I, Hawkins P, Heymans C. Fecal sludge management: a comparative analysis of 12 cities. J Water, Sanit Hyg Dev. 2014;4: 563. doi: 10.2166/washdev.2014.026

51. Saxton RE, Yeasmin F, Alam M-U, Al-Masud A, Dutta NC, Yeasmin D, et al. If I do not have enough water, then how could I bring additional water for toilet cleaning?! Addressing water scarcity to promote hygienic use of shared toilets in Dhaka, Bangladesh. Trop Med Int Heal. 2017;22: 1099–1111. doi: 10.1111/tmi.12914 28656596

52. World Health Organization. WHO Guidelines for the Safe use of Wastewater, Excreta, and Greywater. World Health Organization; 2006.

53. Alexander KA, Godrej A. Greywater Disposal Practices in Northern Botswana—The Silent Spring? Int J Environ Res Public Health. 2015;12: 14529–40. doi: 10.3390/ijerph121114529 26580640

54. Saaty TL. How to make a decision: The analytic hierarchy process. Eur J Oper Res. 1990;48: 9–26. doi: 10.1016/0377-2217(90)90057-I

55. Boehm AB, Griffith J, McGee C, Edge TA, Solo-Gabriele HM, Whitman R, et al. Faecal indicator bacteria enumeration in beach sand: A comparison study of extraction methods in medium to coarse sands. J Appl Microbiol. 2009;107: 1740–1750. doi: 10.1111/j.1365-2672.2009.04440.x 19659700

56. Mattioli MC, Boehm AB, Davis J, Harris AR, Mrisho M, Pickering AJ. Enteric pathogens in stored drinking water and on caregiver’s hands in Tanzanian households with and without reported cases of child diarrhea. PLoS One. 2014;9. doi: 10.1371/journal.pone.0084939 24392161

57. Ercumen A, Pickering AJ, Kwong LH, Arnold BF, Parvez SM, Alam M, et al. Animal Feces Contribute to Domestic Fecal Contamination: Evidence from E. coli Measured in Water, Hands, Food, Flies, and Soil in Bangladesh. Environ Sci Technol. 2017;51: 8725–8734. doi: 10.1021/acs.est.7b01710 28686435

58. Navab-Daneshmand T, Friedrich MND, Gächter M, Montealegre MC, Mlambo LS, Nhiwatiwa T, et al. Escherichia coli contamination across multiple environmental compartments (soil, hands, drinking water, and handwashing water) in urban Harare: Correlations and risk factors. Am J Trop Med Hyg. 2018;98: 803–813. doi: 10.4269/ajtmh.17-0521 29363444

59. Schneekloth J, Bauder T, Broner I, Waskom R. Measurement of Soil Moisture [Internet]. 2002. Available: http://extension.colostate.edu/disaster-web-sites/drought-resources/drought-related-tip-sheets/measurement-of-soil-moisture/

60. Hedin G, Rynbäck J, Loré B. New technique to take samples from environmental surfaces using flocked nylon swabs. J Hosp Infect. Elsevier; 2010;75: 314–7. doi: 10.1016/j.jhin.2010.02.027 20451296

61. Bain RES, Woodall C, Elliott J, Arnold BF, Tung R, Morley R, et al. Evaluation of an inexpensive growth medium for direct detection of Escherichia coli in temperate and sub-tropical waters. PLoS One. 2015;10: 1–13. doi: 10.1371/journal.pone.0140997 26495983

62. Trent M, Dreibelbis R, Bir A, Tripathi SN, Labhasetwar P, Nagarnaik P, et al. Access to Household Water Quality Information Leads to Safer Water: A Cluster Randomized Controlled Trial in india. Environ Sci Technol. 2018; acs.est.8b00035. doi: 10.1021/acs.est.8b00035 29641184

63. Bates D, Machler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using {lme4}. J Stat Softw. 2015;67: 1–48. doi: 10.18637/jss.v067.i01

64. Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. New York: Springer; 1998.

65. Abu-Ashour J, Joy DM, Lee H, Whiteley HR, Zelin S. Transport of microorganisms through soil. Water, Air, Soil Pollut. 1994;75: 141–158. doi: 10.1007/BF01100406

66. Ercumen A, Mertens A, Arnold BF, Benjamin-Chung J, Hubbard AE, Ahmed MA, et al. Effects of Single and Combined Water, Sanitation and Handwashing Interventions on Fecal Contamination in the Domestic Environment: A Cluster-Randomized Controlled Trial in Rural Bangladesh. Environ Sci Technol. 2018; acs.est.8b05153. doi: 10.1021/acs.est.8b05153 30256102

67. Schreiner M. Simple Poverty Scorecard Poverty-Assessment Tool Mozambique [Internet]. 2013. Available: SimplePovertyScorecard.com

68. Rheingans R, Anderson JD, Luyendijk R, Cumming O. Measuring disparities in sanitation access: does the measure matter? Trop Med Int Heal. 2014;19: 2–13. doi: 10.1111/tmi.12220 24851256

69. Berendes DM, Yang PJ, Lai A, Hu D, Brown J. Estimation of global recoverable human and animal faecal biomass. Nat Sustain. 2018;1: 679–685. doi: 10.1038/s41893-018-0167-0

70. Wolf J, Johnston RB, Hunter PR, Gordon B, Medlicott K, Prüss-Üstün A. A Faecal Contamination Index for interpreting heterogeneous diarrhoea impacts of water, sanitation and hygiene interventions and overall, regional and country estimates of community sanitation coverage with a focus on low- and middle-income countries. Int J Hyg Environ Health. 2018; doi: 10.1016/j.ijheh.2018.11.005 30503228

71. Ercumen A, Pickering AJ, Kwong LH, Mertens A, Arnold BF, Benjamin-Chung J, et al. Do Sanitation Improvements Reduce Fecal Contamination of Water, Hands, Food, Soil, and Flies? Evidence from a Cluster-Randomized Controlled Trial in Rural Bangladesh. Environ Sci Technol. 2018;52: 12089–12097. doi: 10.1021/acs.est.8b02988 30256095

72. Huda TMN, Schmidt W-P, Pickering AJ, Unicomb L, Mahmud ZH, Luby SP, et al. Effect of Neighborhood Sanitation Coverage on Fecal Contamination of the Household Environment in Rural Bangladesh. Am J Trop Med Hyg. 2019; doi: 10.4269/ajtmh.16-0996 30675846

73. DiVita MA, Halder AK, Jahid IK, Islam M, Sobsey MD, Luby SP, et al. The Utility of Common Household Objects as Markers of Home Hygiene in the Context of Access to Improved Sanitation. Epidemiology. 2008;19: S323. doi: 10.1097/01.ede.0000340507.17483.d7

74. Fujioka R, Sian-Denton C, Borja M, Castro J, Morphew K. Soil: the environmental source of Escherichia coli and Enterococci in Guam’s streams. J Appl Microbiol. 1998;85: 83S–89S. doi: 10.1111/j.1365-2672.1998.tb05286.x 21182696

75. Hardina CM, Fujioka R. Soil: The environmental source of Escherichia coli and enterococci in Hawaii’s streams. Environ Toxicol. 1991;6: 185–195. Available: https://doi.org/10.1002/tox.2530060208

76. Ishii S, Ksoll WB, Hicks RE, Sadowsky MJ. Presence and Growth of Naturalized Escherichia coli in Temperate Soils from Lake Superior Watersheds. Appl Environ Microbiol. 2006;72: 612–621. doi: 10.1128/AEM.72.1.612-621.2006 16391098

77. Sobsey MD, Khatib LA, Hill VR, Alocilja E, Pillai S. Pathogens in Animal Wastes and the Impacts of Waste Management Practices on Their Survival, Transport and Fate. Anim Agric Environ. 2006; 609–665.

78. Ritter RL, Peprah D, Null C, Moe CL, Armah G, Ampofo J, et al. Within-Compound Versus Public Latrine Access and Child Feces Disposal Practices in Low-Income Neighborhoods of Accra, Ghana. Am J Trop Med Hyg. 2018;98: 1250–1259. doi: 10.4269/ajtmh.17-0654 29557327


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Současné pohledy na riziko v parodontologii
nový kurz
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#