Asymmetric valuation of gains and losses in effort-based decision making
Autoři:
Megan K. O’Brien aff001; Alaa A. Ahmed aff001
Působiště autorů:
Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223268
Souhrn
Our decisions are often swayed by a desire to avoid losses over a desire to acquire gains. While loss aversion has been confirmed for decisions about money or commodities, it is unclear how individuals generally value gains relative to losses in effort-based decisions. For example, do individuals avoid greater work more than they seek out less work? We examined this question in the context of physical effort, using an arm-reaching task in which decreased effort was framed as a gain and increased effort was framed as a loss. Subjects performed reaching movements against different levels of resistance that increased or decreased the effort demands of the reaches. They then chose to accept or reject various lotteries, each with a possibility of performing less effortful reaches and a possibility of performing more effortful reaches, compared to the certain outcome of performing reaches against a fixed reference level of effort. Subjects avoided higher effort conditions more than they sought lower effort conditions, demonstrating asymmetric valuation of gains and losses. Using prospect theory, we explored various model formulations to determine subject-specific valuation of effort in these mixed gambles. A nonlinear model of effort valuation demonstrating increasing sensitivity to absolute effort best described the effort lottery choices. In contrast to the loss-aversion observed in financial decisions, there was no evidence of loss aversion in effort-based decisions. Rather, we observed moderate relief-seeking behavior. This model confirms that gains and losses are valued asymmetrically. This is due to the combined effects of increasing sensitivity to absolute effort and moderate relief-seeking, leading to a net effect of greater avoidance of higher effort. Asymmetric valuation was magnified on a later day of testing. In contrast, subjects were loss-averse in a comparable financial task. We suggest that consideration of nonlinear effort valuation can inform future studies of sensorimotor control and exercise motivation.
Klíčová slova:
Behavior – Decision making – Experimental economics – Finance – Learning – Simulation and modeling – Decision theory
Zdroje
1. Tversky A, Kahneman D. Loss aversion in riskless choice: a reference-dependent model. Q J Econ. 1991;106(4): 1039–1061.
2. Kahneman D, Knetcht J, Thaler R. Anomalies: the endowment effect, loss aversion, and status quo bias. J Econ Perspect. 1991;5(1): 193–206.
3. Tversky A, Kahneman D. Advances in prospect theory: cumulative representation of uncertainty. J Risk Uncertain. 1992;5: 297–323.
4. Hull C. Unadaptive habits and experimental extinction. In: Elliot RM, ed. Principles of Behavior. New York: Appleton-Century-Crofts Inc; 1943. pp 293–295.
5. Shadmehr R, Huang HJ, Ahmed AA. A representation of effort in decision-making and motor control. Curr. Biol. 2016;26: 1929–1934. doi: 10.1016/j.cub.2016.05.065 27374338
6. Wang W, Dounskaia N. Load emphasizes muscle effort minimization during selection of arm movement direction. J Neuroeng Rehabil. 2012;9: 70. doi: 10.1186/1743-0003-9-70 23035925
7. Cos I, Belanger N, Cisek P. The influence of predicted arm biomechanics on decision making. J Neurophysiol. 2011;105: 3022–3033. doi: 10.1152/jn.00975.2010 21451055
8. Bitgood S, Dukes S. Not another step! Economy of movement and pedestrian choice point behavior in shopping malls. Environ Behav. 2005;38(3): 394–405.
9. Rosenbaum DA, Gaydos MJ. A method for obtaining psychophysical estimates of movement costs. J Mot Behav. 2008;40: 11–17. doi: 10.3200/JMBR.40.1.11-17 18316293
10. Ranganathan R, Adewuyi A, Mussa-Ivaldi FA. Learning to be lazy: exploiting redundancy in a novel task to minimize movement-related effort. J Neurosci. 2013;33(7): 2754–2760. doi: 10.1523/JNEUROSCI.1553-12.2013 23407935
11. Burk D, Ingram JN, Franklin DW, Shadlen MN, Wolpert DM. Motor effort alters changes of mind in sensorimotor decision making. PLOS One. 2014;9(3): e92681. doi: 10.1371/journal.pone.0092681 24651615
12. Huang HJ, Kram R, Ahmed AA. Reduction of metabolic cost during motor learning of arm-reaching dynamics. J Neurosci. 2012;32(6): 2182–2190. doi: 10.1523/JNEUROSCI.4003-11.2012 22323730
13. Huang HJ, Ahmed AA. Older adults learn less, but still reduce metabolic cost, during motor adaptation. J Neurophys. 2014;111: 135–144.
14. Huang HJ, Ahmed AA. Reductions in muscle coactivation and metabolic cost during visuomotor adaptation. J Neurophys. 2014;112: 2264–2274.
15. Kool W, McGuire JT, Rosen ZB, Botvinick MM. Decision making and the avoidance of cognitive demand. J Exp Psychol Gen. 2010;139: 665–682. doi: 10.1037/a0020198 20853993
16. Stevens JR, Gosati AG, Ross KR, Hauser MD. Will travel for food: spatial discounting in two new world monkeys. Curr Biol. 2005;15(20): 1855–1860. doi: 10.1016/j.cub.2005.09.016 16243033
17. Prévost C, Pessiglione M, Cléry-Melin M-L, Dreher J-C. Separate valuation subsystems for delay and effort decision costs. J Neurosci. 2010;30(42): 14080–14090. doi: 10.1523/JNEUROSCI.2752-10.2010 20962229
18. Hartmann MN, Hager OM, Tobler PN, Kaiser S. Parabolic discounting of monetary rewards by physical effort. Behav Processes. 2013;100: 192–196. doi: 10.1016/j.beproc.2013.09.014 24140077
19. Klein-Flügge MC, Kennerley SW, Saraiva AC, Penny WD, Bestmann S. Behavioral modeling of human choices reveals dissociable effects of physical effort and temporal delay on reward devaluation. PLoS Comput Biol. 2015;11(3): e1004116. doi: 10.1371/journal.pcbi.1004116 25816114
20. Apps MAJ, Grima LL, Manohar S, Husain M. The role of cognitive effort in subjective reward devaluation and risky decision-making. Sci Rep. 2015;5: 16880. doi: 10.1038/srep16880 26586084
21. Nagengast AJ, Braun DA, Wolpert DM. Risk-sensitivity and the mean-variance trade-off: decision making in sensorimotor control. Proc R Soc Lond B Biol Sci. 2011;278: 2325–2332. doi: 10.1098/rspb.2010.2518 21208966
22. Russ DW, Elliott MA, Vandenborne K, Walter GA, and Binder-Macleod SA. Metabolic costs of isometric force generation and maintenance of human skeletal muscle. Am J Physiol Endocrinol Metab. 2002;282(2): E448–E457. doi: 10.1152/ajpendo.00285.2001 11788378
23. Kushmerick MJ and Paul RJ. Aerobic recovery metabolism following a single isometric tetanus in frog sartorius muscle at 0 degrees C. J Physiol. 1976;254(3): 693–709. doi: 10.1113/jphysiol.1976.sp011253 1082933
24. Uno Y, Kawato M, Suzuki R. Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol Cybern. 1989;61(2):89–101. doi: 10.1007/bf00204593 2742921
25. Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination Nat Neurosci. 2002;5:1226–1235. doi: 10.1038/nn963 12404008
26. O’Sullivan I, Burdet E, Diedrichsen J. Dissociating variability and effort as determinants of coordination. PLoS Comput Biol. 2009;5:e1000345. doi: 10.1371/journal.pcbi.1000345 19360132
27. Izawa J, Rane T, Donchin O, Shadmehr R. Motor adaptation as a process of reoptimization. J Neurosci. 2008;28:2883–2891. doi: 10.1523/JNEUROSCI.5359-07.2008 18337419
28. Hartmann MN, Hager OM, Tobler PN, Kaiser S. Parabolic discounting of monetary rewards by physical effort. Behav Processes. 2013;100:192–196. doi: 10.1016/j.beproc.2013.09.014 24140077
29. Białaszek W, Marcowski P, Ostaszewski P. Physical and cognitive effort discounting across different reward magnitudes: Tests of discounting models. PLoS ONE. 2017;12(7):e0182353. doi: 10.1371/journal.pone.0182353 28759631
30. Berret B, Chiovetto E, Nori F, Pozzo T. Evidence for Composite Cost Functions in Arm Movement Planning: An Inverse Optimal Control Approach. PLoS Comput Biol. 2011;7(10): e1002183. doi: 10.1371/journal.pcbi.1002183 22022242
31. Morel P, Ulbrich P, Gail A. What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control. PLoS Biol. 2017;15(6):e2001323. doi: 10.1371/journal.pbio.2001323 28586347
32. Sokol-Hessner P, Hsu M, Curley NG, Delgado MR, Camerer CF, Phelps EA. Thinking like a trader selectively reduces individuals' loss aversion. Proc Natl Acad Sci. 2009;106(13):5035–5040. doi: 10.1073/pnas.0806761106 19289824
33. Chumbley JR, Krajbich I, Engelmann JB, Russell E, Van Uum S, Koren G Fehr E. Endogenous cortisol predicts decreased loss aversion in young men. Psychol Sci. 2014;25(11):2102–2105. doi: 10.1177/0956797614546555 25212582
34. Novemsky N, Kahneman D. How do intentions affect loss aversion? J Mark Res. 2005;42(2): 139–140.
35. Kermer DA, Driver-Linn E, Wilson TD, Gilbert DT. Loss aversion is an affective forecasting error. Psychol Sci. 2006;17(8): 649–653. doi: 10.1111/j.1467-9280.2006.01760.x 16913944
36. Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econometrica. 1979;47(2): 263–292.
37. Kistemaker DA, Wong JD, Gribble PL. The central nervous system does not minimize energy costs in arm movements. J Neurophysiol. 2010;104(6): 2985–2994. doi: 10.1152/jn.00483.2010 20884757
38. Harris CM, Wolpert DM. Signal-dependent noise determines motor planning. Nature. 2008;394(6695): 780–784.
39. Wicker FW, Hamman D, Hagen AS, Reed JL, Wiehe JA. Studies of loss aversion and perceived necessity. J Psychol. 1995;129(1): 75–189.
40. Gätcher S, Johnson EJ, Herrmann A. Individual-level loss aversion in riskless and risky choices. CeDEx Discussion Paper Series. 2010; no. 2961: ISSN 1749–3293.
41. Harinck F, Van Dijk E, Van Beest I, Mersmann P. When gains loom larger than losses: reversed loss aversion for small amounts of money. Psychol Sci. 2007;18(12): 1099–1105. doi: 10.1111/j.1467-9280.2007.02031.x 18031418
42. Ert E, Erev I. On the descriptive value of loss aversion in decisions under risk: six clarifications. Judgm Decis Mak. 2013;8(3): 214–235.
43. Levy DJ, Glimcher PW. Comparing apples and oranges: using reward-specific and reward-general subjective value representation in the brain. J Neurosci. 2011;31(41):14693–14707. doi: 10.1523/JNEUROSCI.2218-11.2011 21994386
44. Wu S-W, Delgado MR, Maloney LT. Economic decision-making compared with an equivalent motor task. Proc Natl Acad Sci. 2009; 06:6088–6093.
45. O’Brien MK, Ahmed AA. Does risk-sensitivity transfer across movements? J Neurophys. 2013;109:1866–1875.
46. O’Brien MK, Ahmed AA. Threat affects risk preferences in movement decision making. Front Behav Neurosci. 2015;9:150. doi: 10.3389/fnbeh.2015.00150 26106311
47. O’Brien MK, Ahmed AA. Rationality in human movement. Exerc Sport Sci Rev. 2016;44(1): 20–28. doi: 10.1249/JES.0000000000000066 26509481
48. Weber EU, Blais A-R, Betz NE. A domain-specific risk-attitude scale: measuring risk perceptions and risk behaviors. J Behav Dec Making. 2002;15:263–290.
49. Kool W, Botvinick MM. A labor/leisure tradeoff in cognitive control. J Exp Psychol Gen. 2012;143: 131–141. doi: 10.1037/a0031048 23230991
50. Tom SM, Fox CR, Trepel C, Poldrack RA. The neural basis of loss aversion in decision-making under risk. Science. 2007;315(5811): 515–518. doi: 10.1126/science.1134239 17255512
51. Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982; 14(5): 377–381. 7154893
52. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ. Bayesian model selection for group studies. Neuroimage. 2009; 46(4): 1004–1017. doi: 10.1016/j.neuroimage.2009.03.025 19306932
53. Rigoux L, Stephan KE, Friston KJ, Daunizeau J. Bayesian model selection for group studies–Revisited. Neuroimage. 2014; 84(1): 971–985.
54. Devaine M, Hollard G, Daunizeau J. The Social Bayesian Brain: Does Mentalizing Make a Difference When We Learn? PLoS Comput Biol. 2014; 10(12): e1003992. doi: 10.1371/journal.pcbi.1003992 25474637
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy