Exploring the basis of 2-propenyl and 3-butenyl glucosinolate synthesis by QTL mapping and RNA-sequencing in Brassica juncea
Autoři:
Aimal Nawaz Khattak aff001; Tianya Wang aff001; Kunjiang Yu aff001; Renqin Yang aff001; Wei Wan aff001; Botao Ye aff001; Entang Tian aff001
Působiště autorů:
Oil Crops Research Institute of Guizhou University, Agricultural College of Guizhou University, Guizhou University, Guiyang, China
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0220597
Souhrn
Brassica juncea is used as a condiment, as vegetables and as an oilseed crop, especially in semiarid areas. In the present study, we constructed a genetic map using one recombinant inbred line (RIL) of B. juncea. A total of 304 ILP (intron length polymorphism) markers were mapped to 18 linkage groups designated LG01-LG18 in B. juncea. The constructed map covered a total genetic length of 1671.13 cM with an average marker interval of 5.50 cM. The QTLs for 2-propenyl glucosinolates (GSLs) colocalized with the QTLs for 3-butenyl GSLs between At1g26180 and BnapPIP1580 on LG08 in the field experiments of 2016 and 2017. These QTLs accounted for an average of 42.3% and 42.6% phenotypic variation for 2-propenyl and 3-butenyl GSLs, respectively. Furthermore, the Illumina RNA-sequencing technique was used to excavate the genes responsible for the synthesis of GSLs in the siliques of the parental lines of the RIL mapping population, because the bulk of the seed GSLs might originate from the siliques. Comparative analysis and annotation by gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) revealed that 324 genes were involved in GSL metabolism, among which only 24 transcripts were differentially expressed genes (DEGs). Among those DEGs, 15 genes were involved in the biosynthesis and transport of aliphatic GSLs, and their expression patterns were further validated by qRT-PCR analysis. Joint QTL mapping and RNA-sequencing analyses reveal one candidate gene of IIL1 (LOC106416451) for GSL metabolism in B. juncea. These results will be helpful for further fine mapping, gene cloning and genetic mechanisms of 2-propenyl and 3-butenyl GSLs in B. juncea.
Klíčová slova:
Brassica – Gene mapping – Gene ontologies – Genome analysis – Polymerase chain reaction – Quantitative trait loci – RNA sequencing – Seeds
Zdroje
1. Wilson RA, Sangha MK, Banga SS, Atwal AK, Gupta S (2014) Heat stress tolerance in relation to oxidative stress and antioxidants in Brassica juncea. Journal of environmental biology 35: 383–387. 24665766
2. Kumar A, Singh DP (1998) Use of Physiological Indices as a Screening Technique for Drought Tolerance in Oilseed Brassica Species. Annals of Botany 81: 413–420.
3. Phutela A, Jain V, Dhawan K, Nainawatee HS (2000) Proline Metabolism Under Water Stress in the Leaves and Roots of Brassica juncea Cultivars Differing in Drought Tolerance. Journal of Plant Biochemistry and Biotechnology 9: 35–39.
4. Srivastava SK (1987) Peroxidase and Poly-Phenol Oxidase in Brassica juncea Plants Infected with Macrophomina phaseolina (Tassai) Goid. and their Implication in Disease Resistance. Journal of Phytopathology 120: 249–254.
5. Roy NN (1984) Interspecific transfer of Brassica juncea-type high blackleg resistance to Brassica napus. Euphytica 33: 295–303.
6. Østergaard L, Kempin SA, Bies D, Klee HJ, Yanofsky MF (2006) Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnology Journal 4: 45–51. doi: 10.1111/j.1467-7652.2005.00156.x 17177784
7. Liu Y, Wei W, Ma K, Darmency H (2013) Spread of introgressed insect-resistance genes in wild populations of Brassica juncea: a simulated in-vivo approach. Transgenic Research 22: 747–756. doi: 10.1007/s11248-012-9679-y 23250587
8. Love HK, Rakow G, Ranney JP, Downey RK. Breeding improvements towarda canola quality Brassica juncea; 1991; Saskatoon, Canada. pp. 164–169.
9. Delourme R, Foisset N, Horvais R, Barret P, Champagne G, et al. (1998) Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theoretical and Applied Genetics 97: 129–134.
10. Delourme R, Eber F (1992) Linkage between an isozyme marker and a restorer gene in radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theoretical and Applied Genetics 85: 222–228. doi: 10.1007/BF00222863 24197308
11. Tian E, Roslinsky V, Cheng B (2014) Molecular marker-assisted breeding for improved Ogura cms restorer line (RfoRfo) and mapping of the restorer gene (Rfo) in Brassica juncea. Molecular Breeding 34: 1361–1371.
12. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56: 5–51. doi: 10.1016/s0031-9422(00)00316-2 11198818
13. Kjær A, Olesen Larsen P (1973) Non-protein amino acids, cyano-genic glycosides and glucosinolates. In: Geissman T.A. (Ed.), Specialist Periodical Reports. The Chemical Society, London. 71–105.
14. Hogge LR, Reed DW, Underhill EW, Haughn GW (1988) HPLC Separation of Glucosinolates from Leaves and Seeds of Arabidopsis thaliana and Their Identification Using Thermospray Liquid Chramatography/Mass Spectrometry*. Journal of Chromatographic Science 26: 551–556.
15. Halkier BA, Du L (1997) The biosynthesis of glucosinolates. Trends in Plant Science 2: 425–431.
16. Yang J, Liu D, Wang X, Ji C, Cheng F, et al. (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genetics 48: 1225. doi: 10.1038/ng.3657 27595476
17. Nour-Eldin HH, Halkier BA (2009) Piecing together the transport pathway of aliphatic glucosinolates. Phytochemistry Reviews 8: 53–67.
18. Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62: 471–481. doi: 10.1016/s0031-9422(02)00549-6 12620360
19. Wan W, Yu K, Ye B, Khattak AN, Wang T, et al. (2019) Screening, cloning and molecular characterization of the candidate genes for determinate inflorescence in Brassica napus. Plant Genomics in China XX Nan Chang.
20. Sodhi YS, Mukhopadhyay A, Arumugam N, Verma JK, Gupta V, et al. (2002) Genetic analysis of total glucosinolate in crosses involving a high glucosinolate Indian variety and a low glucosinolate line of Brassica juncea. Plant Breeding 121: 508–511.
21. Love HK, Rakow G, Raney JP, Downey RK (1990) Genetic control of 2-propenyl and 3-butenyl glucosinolate synthesis in mustard. Canadian Journal of Plant Science 70: 425–429.
22. Gland A (1981) Variation of alkenyl glucosinolates in seeds of Brassica species. Z Pflanzenzuchtg 87: 96–110.
23. Ripley VL, Roslinsky V (2005) Identification of an ISSR Marker for 2-propenyl glucosinolate Content in Brassica juncea L. and Conversion to a SCAR Marker. Molecular Breeding 16: 57–66.
24. Sotelo T, Soengas P, Velasco P, Rodríguez VM, Cartea ME (2014) Identification of Metabolic QTLs and Candidate Genes for Glucosinolate Synthesis in Brassica oleracea Leaves, Seeds and Flower Buds. PLOS ONE 9: e91428. doi: 10.1371/journal.pone.0091428 24614913
25. Feng J, Long Y, Shi L, Shi J, Barker G, et al. (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193: 96–108. doi: 10.1111/j.1469-8137.2011.03890.x 21973035
26. Wang X, Zhao X, Zhu J, Wu W (2005) Genome-wide Investigation of Intron Length Polymorphisms and Their Potential as Molecular Markers in Rice (Oryza sativa L.). DNA Research 12: 417–427. doi: 10.1093/dnares/dsi019 16769698
27. Yang L, Jin G, Zhao X, Zheng Y, Xu Z, et al. (2007) PIP: a database of potential intron polymorphism markers. Bioinformatics 23: 2174–2177. doi: 10.1093/bioinformatics/btm296 17545179
28. Javidfar F, Cheng B (2013) Single locus, multiallelic inheritance of erucic acid content and linkage mapping of FAE1 gene in yellow mustard. Crop Sci 53: 825–832.
29. Muthamilarasan M, Venkata Suresh B, Pandey G, Kumari K, Parida SK, et al. (2014) Development of 5123 Intron-Length Polymorphic Markers for Large-Scale Genotyping Applications in Foxtail Millet. DNA Research 21: 41–52. doi: 10.1093/dnares/dst039 24086082
30. Liu H, Lin Y, Chen G, Shen Y, Liu J, et al. (2012) Genome-scale identification of resistance gene analogs and the development of their intron length polymorphism markers in maize. Molecular Breeding 29: 437–447.
31. Wang Y, Chen J, Francis DM, Shen H, Wu T, et al. (2010) Discovery of intron polymorphisms in cultivated tomato using both tomato and Arabidopsis genomic information. Theoretical and Applied Genetics 121: 1199–1207. doi: 10.1007/s00122-010-1381-y 20552324
32. Panjabi P, Jagannath A, Bisht N, Padmaja K, Sharma S, et al. (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C brassica genomes. BMC Genomics 9: 1–19. doi: 10.1186/1471-2164-9-1 18171476
33. Tian E, Li L, Jia S, Lin S (2018) Variation and Statistic Analysis of Agronomic Traits of Recombinant Inbred Lines of Brassica juncea L. Asian Agricultural Research 10.
34. Somers DJ, Friesen KRD, Rakow G (1998) Identification of molecular markers associated with linoleic acid desaturation in Brassica napus. Theor Appl Genet 96: 897–903.
35. Tian E, Zeng F, MacKay K, Roslinsky V, Cheng B (2014) Detection and Molecular Characterization of Two FAD3 Genes Controlling Linolenic Acid Content and Development of Allele-Specific Markers in Yellow Mustard (Sinapis alba). PLOS ONE 9: e97430. doi: 10.1371/journal.pone.0097430 24823372
36. Van Ooijen JW (2006) JoinMap® Version 4.0: Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands.
37. Voorrips RE (2002) MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity 93: 77–78. doi: 10.1093/jhered/93.1.77 12011185
38. Van Ooijen JW (2009) MapQTL 6: Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV: Wageningen, Netherlands.
39. Agerbirk N, Olsen CE, Nielsen JK (2001) Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp. arcuata. Phytochemistry 58: 91–100. doi: 10.1016/s0031-9422(01)00151-0 11524118
40. Wathelet J-P, Iori R, Leoni O, Rollin P, Quinsac A, et al. (2004) Guidelines for glucosinolate analysis in green tissues used for biofumigation. Agroindustria 3.
41. Wang B, Tseng E, Regulski M, Clark TA, Hon T, et al. (2016) Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nature Communications 7: 11708. doi: 10.1038/ncomms11708 27339440
42. Wu W, Huang Z, Li Z, Zhang S, Liu X, et al. (2016) De novo transcriptome sequencing of Cryptotermes domesticus and comparative analysis of gene expression in response to different wood species. Gene 575: 655–666. doi: 10.1016/j.gene.2015.09.055 26410413
43. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26: 136–138. doi: 10.1093/bioinformatics/btp612 19855105
44. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: 511–515. doi: 10.1038/nbt.1621 20436464
45. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, et al. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7: 562–578. doi: 10.1038/nprot.2012.016 22383036
46. Gigolashvili T, Berger B, Flügge U-I (2009) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochemistry reviews 2009 v.8 no.1: pp. 3–13.
47. Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates–gene discovery and beyond. Trends in Plant Science 15: 283–290. doi: 10.1016/j.tplants.2010.02.005 20303821
48. Seo MS, Jin M, Sohn SH, Kim JS (2017) Expression profiles of BrMYB transcription factors related to glucosinolate biosynthesis and stress response in eight subspecies of Brassica rapa. FEBS Open Bio 7: 1646–1659. doi: 10.1002/2211-5463.12231 29123974
49. Hirai MY (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280: 25590–25595. doi: 10.1074/jbc.M502332200 15866872
50. Lachler K, Imhof J, Reichelt M, Gershenzon J, Binder S (2015) The cytosolic branched-chain aminotransferases of Arabidopsis thaliana influence methionine supply, salvage and glucosinolate metabolism. Plant Mol Biol 88: 119–131. doi: 10.1007/s11103-015-0312-3 25851613
51. Zhang X, Liu T, Duan M, Song J, Li X (2016) De novo Transcriptome Analysis of Sinapis alba in Revealing the Glucosinolate and Phytochelatin Pathways. Front Plant Sci 7: 259. doi: 10.3389/fpls.2016.00259 26973695
52. Seo MS, Kim JS (2017) Understanding of MYB Transcription Factors Involved in Glucosinolate Biosynthesis in Brassicaceae. Molecules 22.
53. Andersen TG, Halkier BA (2014) Upon bolting the GTR1 and GTR2 transporters mediate transport of glucosinolates to the inflorescence rather than roots. Plant signaling & behavior 9: e27740.
54. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome research 12: 656–664. doi: 10.1101/gr.229202 11932250
55. Javidfar F, Cheng B (2013) Construction of a genetic linkage map and QTL analysis of erucic acid content and glucosinolate components in yellow mustard (Sinapis alba L.). BMC Plant Biol 13: 142. doi: 10.1186/1471-2229-13-142 24066707
56. Nelson MN, Lydiate DJ (2006) New evidence from Sinapis alba L. for ancestral triplication in a crucifer genome. Genome 49: 230–238. doi: 10.1139/g05-099 16604105
57. Cheung WY, Landry BS, Raney P, Rakow GFW. Molecular Mapping of Seed Quality Traits in Brassica Juncea L. Czern. and Coss; 1998. International Society for Horticultural Science (ISHS), Leuven, Belgium. pp. 139–148.
58. Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, et al. (2007) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross scheme for the identification of 'true' QTL. Theor Appl Genet 116: 77–85. doi: 10.1007/s00122-007-0648-4 17898985
59. Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR (2003) RFLP linkage analysis and mapping genes controlling the fatty acid profile of <i>Brassica juncea</i> using reciprocal DH populations. TAG Theoretical and Applied Genetics 107: 283–290. doi: 10.1007/s00122-003-1244-x 12669199
60. Xu Y, Zhang X-Q, Harasymow S, Westcott S, Zhang W, et al. (2018) Molecular marker-assisted backcrossing breeding: an example to transfer a thermostable β-amylase gene from wild barley. Molecular Breeding 38: 63.
61. L. K, S. T, R. C, P. F, A. B, et al. TRANSFER OF A MAJOR QTL FOR RESISTANCE TO FUSARIUM HEAD BLIGHT FROM THINOPYRUM ELONGATUM ONTO DURUM WHEAT 7AL CHROMOSOME ARM AND ITS PYRAMIDING WITH OTHER USEFUL GENES FROM TH. PONTICUM; 2017; Pisa, Italy.
62. Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jorgensen ME, et al. (2012) NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488: 531–534. doi: 10.1038/nature11285 22864417
63. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence Commitment and Architecture in Arabidopsis. Science 275: 80–83. doi: 10.1126/science.275.5296.80 8974397
64. Ellerbrock B, Kim JH, Jander G (2007) Contribution of glucosinolate transport to Arabidopsis defense responses. Plant Signal Behav 2: 282–283. doi: 10.4161/psb.2.4.4014 19704682
65. Mirza N, Crocoll C, Erik Olsen C, Ann Halkier B (2016) Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli. Metabolic Engineering 35: 31–37. doi: 10.1016/j.ymben.2015.09.012 26410451
66. Imhof J, Huber F, Reichelt M, Gershenzon J, Wiegreffe C, et al. (2014) The small subunit 1 of the Arabidopsis isopropylmalate isomerase is required for normal growth and development and the early stages of glucosinolate formation. PLoS One 9: e91071. doi: 10.1371/journal.pone.0091071 24608865
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy