Costs and cost-effectiveness analyses of mCARE strategies for promoting care seeking of maternal and newborn health services in rural Bangladesh
Autoři:
Youngji Jo aff001; Amnesty E. LeFevre aff001; Katherine Healy aff001; Neelu Singh aff001; Kelsey Alland aff001; Sucheta Mehra aff001; Hasmot Ali aff002; Saijuddin Shaikh aff002; Rezawanul Haque aff002; Parul Christian aff001; Alain B. Labrique aff001
Působiště autorů:
Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
aff001; JiVitA Program, Johns Hopkins University, Gaibandha, Bangladesh
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223004
Souhrn
Objective
We examined the incremental cost-effectiveness between two mHealth programs, implemented from 2011 to 2015 in rural Bangladesh: (1) Comprehensive mCARE package as an intervention group and (2) Basic mCARE package as a control group.
Methods
Both programs included a core package of census enumeration and pregnancy surveillance provided by an established cadre of digitally enabled community health workers (CHWs). In the comprehensive mCARE package, short message service (SMS) and home visit reminders were additionally sent to pregnant women (n = 610) and CHWs (n = 70) to promote the pregnant women’s care-seeking of essential maternal and newborn care services. Economic costs were assessed from a program perspective inclusive of development, start-up, and implementation phases. Effects were calculated as disability adjusted life years (DALYs) and the number of newborn deaths averted. For comparative purposes, we normalized our evaluation to estimate total costs and total newborn deaths averted per 1 million people in a community for both groups. Uncertainty was assessed using probabilistic sensitivity analyses with Monte Carlo simulation.
Results
The addition of SMS and home visit reminders based on a mobile phone-facilitated pregnancy surveillance system was highly cost effective at a cost per DALY averted of $31 (95% uncertainty range: $19–81). The comprehensive mCARE program had at least 88% probability of being highly cost-effective as compared to the basic mCARE program based on the threshold of Bangladesh’s GDP per capita.
Conclusion
mHealth strategies such as SMS and home visit reminders on a well-established pregnancy surveillance system may improve service utilization and program cost-effectiveness in low-resource settings.
Klíčová slova:
Antenatal care – Bangladesh – Cell phones – Census – Cost-effectiveness analysis – Neonatal care – Pregnancy – Software tools
Zdroje
1. UNICEF. Maternal and Newborn Health Disparities. Bangladesh. Available from: https://data.unicef.org/wp-content/uploads/country_profiles/Bangladesh/country%20profile_BGD.pdf
2. World Health Organization. Bangladesh Health System Review. 2015. Available from: http://www.wpro.who.int/asia_pacific_observatory/hits/series/bgd_health_system_review.pdf
3. Rahman M, Jhohura FT, Mistry SK, Chowdhury TR, Ishaque T, Shah R, et al. Assessing Community Based Improved Maternal Neonatal Child Survival (IMNCS) Program in Rural Bangladesh. PloS one. 2015;10(9):e0136898. doi: 10.1371/journal.pone.0136898. 26340672; PubMed Central PMCID: PMC4560389.
4. El Arifeen S, Christou A, Reichenbach L, Osman FA, Azad K, Islam KS, et al. Community-based approaches and partnerships: innovations in health-service delivery in Bangladesh. Lancet. 2013;382(9909):2012–26. doi: 10.1016/S0140-6736(13)62149-2. 24268607.
5. White A, Thomas DS, Ezeanochie N, Bull S. Health Worker mHealth Utilization: A Systematic Review. Computers, informatics, nursing: CIN. 2016;34(5):206–13. doi: 10.1097/CIN.0000000000000231. 26955009; PubMed Central PMCID: PMC4860109.
6. World Health Orgnization. mHealth. New horizons for health through mobile technologies. Available from: http://www.who.int/goe/publications/goe_mhealth_web.pdf
7. Government of the Peoples' Republic of Bangladesh. Finance Division. Ministry of Finance. Journey Towards A Digital Bangladesh: Update 2013. 2013:1–73.
8. Khan MAH, Cruz VO, Azad AK. Bangladesh's digital health journey: reflections on a decade of quiet revolution. WHO South-East Asia Journal of Public Health, September 2019. Available from:http://www.who-seajph.org/temp/WHOSouth-EastAsiaJPublicHealth8271-4769195_131451.pdf
9. Ahmed T, Lucas H, Khan AS, Islam R, Bhuiya A, Iqbal M. eHealth and mHealth initiatives in Bangladesh: a scoping study. BMC health services research. 2014;14:260. doi: 10.1186/1472-6963-14-260. 24934164; PubMed Central PMCID: PMC4072608.
10. Johns Hopkins University. JiVita. Available from: http://www.africanstrategies4health.org/uploads/1/3/5/3/13538666/mcare_-_enhancing_neonatal_survival_in_rural_south_asia.pdf
11. Banglades Bureau of Statistics. Available from: http://203.112.218.65/
12. Labrique AB, Christian P, Klemm RD, Rashid M, Shamim AA, Massie A, et al. A cluster-randomized, placebo-controlled, maternal vitamin A or beta-carotene supplementation trial in Bangladesh: design and methods. Trials. 2011;12:102. doi: 10.1186/1745-6215-12-102. 21510905; PubMed Central PMCID: PMC3110135.
13. Lund S, Nielsen BB, Hemed M, Boas IM, Said A, Said K, et al. Mobile phones improve antenatal care attendance in Zanzibar: a cluster randomized controlled trial. BMC pregnancy and childbirth. 2014;14:29. doi: 10.1186/1471-2393-14-29. 24438517; PubMed Central PMCID: PMC3898378.
14. World Health Organization. COST-IT. Available from: http://www.who.int/choice/toolkit/cost_it/en/
15. World Health Organizaton. CHOICE. Available from: http://www.who.int/choice/cost-effectiveness/generalized/en/
16. International Monetary Fund, World Economic Outlook Database. Available from: https://www.imf.org/external/pubs/ft/weo/2016/01/weodata/index.aspx
17. Bishai D, Sachathep K, LeFevre A, Thant HN, Zaw M, Aung T, et al. Cost-effectiveness of using a social franchise network to increase uptake of oral rehydration salts and zinc for childhood diarrhea in rural Myanmar. Cost effectiveness and resource allocation: C/E. 2015;13:3. doi: 10.1186/s12962-015-0030-3. 25698906; PubMed Central PMCID: PMC4332918.
18. Global Burden of Disease 2017 Population and Fertility Collaborators. Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1995–2051. doi: 10.1016/S0140-6736(18)32278-5. 30496106; PubMed Central PMCID: PMC6227915.
19. Benson J, Andersen K, Samandari G. Reductions in abortion-related mortality following policy reform: evidence from Romania, South Africa and Bangladesh. Reprod Health. 2011;8:39. doi: 10.1186/1742-4755-8-39. 22192901; PubMed Central PMCID: PMC3287245.
20. Abir T, Agho KE, Ogbo FA, Stevens GJ, Page A, Hasnat MA, et al. Predictors of stillbirths in Bangladesh: evidence from the 2004–2014 nation-wide household surveys. Global health action. 2017;10(1):1410048. doi: 10.1080/16549716.2017.1410048. 29261451; PubMed Central PMCID: PMC5757223.
21. Centers for Disease Control and Prevention (CDC) Division of Reproductive Health. Estimating the Number of Pregnant Women in a Geographic Area. URL:https://www.cdc.gov/reproductivehealth/emergency/pdfs/pregnacyestimatobrochure508.pdf Accessed: 2019-03-22
22. Shillcutt SD, Lefevre AE, Lee AC, Baqui AH, Black RE, Darmstadt GL. Forecasting burden of long-term disability from neonatal conditions: results from the Projahnmo I trial, Sylhet, Bangladesh. Health policy and planning. 2013;28(4):435–52. doi: 10.1093/heapol/czs075. 23002251.
23. Iribarren SJ, Cato K, Falzon L, Stone PW. What is the economic evidence for mHealth? A systematic review of economic evaluations of mHealth solutions. PloS one. 2017;12(2):e0170581. doi: 10.1371/journal.pone.0170581. 28152012; PubMed Central PMCID: PMC5289471.
24. Chang LW, Kagaayi J, Nakigozi G, Serwada D, Quinn TC, Gray RH, et al. Cost analyses of peer health worker and mHealth support interventions for improving AIDS care in Rakai, Uganda. AIDS care. 2013;25(5):652–6. doi: 10.1080/09540121.2012.722600. 22971113; PubMed Central PMCID: PMC3773472.
25. Zurovac D, Larson BA, Sudoi RK, Snow RW. Costs and cost-effectiveness of a mobile phone text-message reminder programmes to improve health workers' adherence to malaria guidelines in Kenya. PloS one. 2012;7(12):e52045. doi: 10.1371/journal.pone.0052045. 23272206; PubMed Central PMCID: PMC3525566.
26. Asiimwe C, Gelvin D, Lee E, Ben Amor Y, Quinto E, Katureebe C, et al. Use of an innovative, affordable, and open-source short message service-based tool to monitor malaria in remote areas of Uganda. Am J Trop Med Hyg. 2011;85(1):26–33. doi: 10.4269/ajtmh.2011.10-0528. 21734120; PubMed Central PMCID: PMC3122339.
27. Hunchangsith P, Barendregt JJ, Vos T, Bertram M. Cost-effectiveness of various tuberculosis control strategies in Thailand. Value Health. 2012;15(1 Suppl):S50–5. doi: 10.1016/j.jval.2011.11.006. 22265067.
28. Guerriero C, Cairns J, Roberts I, Rodgers A, Whittaker R, Free C. The cost-effectiveness of smoking cessation support delivered by mobile phone text messaging: Txt2stop. Eur J Health Econ. 2013;14(5):789–97. doi: 10.1007/s10198-012-0424-5. 22961230; PubMed Central PMCID: PMC3751449.
29. Njuguna HN, Caselton DL, Arunga GO, Emukule GO, Kinyanjui DK, Kalani RM, et al. A comparison of smartphones to paper-based questionnaires for routine influenza sentinel surveillance, Kenya, 2011–2012. BMC medical informatics and decision making. 2014;14:107. doi: 10.1186/s12911-014-0107-5. 25539745; PubMed Central PMCID: PMC4305246.
30. Thriemer K, Ley B, Ame SM, Puri MK, Hashim R, Chang NY, et al. Replacing paper data collection forms with electronic data entry in the field: findings from a study of community-acquired bloodstream infections in Pemba, Zanzibar. BMC research notes. 2012;5:113. doi: 10.1186/1756-0500-5-113. 22353420; PubMed Central PMCID: PMC3392743.
31. Diedhiou A, Gilroy KE, Cox CM, Duncan L, Koumtingue D, Pacque-Margolis S, et al. Successful mLearning Pilot in Senegal: Delivering Family Planning Refresher Training Using Interactive Voice Response and SMS. Glob Health Sci Pract. 2015;3(2):305–21. doi: 10.9745/GHSP-D-14-00220. 26085026; PubMed Central PMCID: PMC4476867.
32. Hoddinott P, Craig L, Maclennan G, Boyers D, Vale L, Grampian NHS, et al. The FEeding Support Team (FEST) randomised, controlled feasibility trial of proactive and reactive telephone support for breastfeeding women living in disadvantaged areas. BMJ open. 2012;2(2):e000652. doi: 10.1136/bmjopen-2011-000652. 22535790; PubMed Central PMCID: PMC3341594.
33. Lund S, Rasch V, Hemed M, Boas IM, Said A, Said K, et al. Mobile phone intervention reduces perinatal mortality in zanzibar: secondary outcomes of a cluster randomized controlled trial. JMIR mHealth and uHealth. 2014;2(1):e15. doi: 10.2196/mhealth.2941. 25098184; PubMed Central PMCID: PMC4114456.
34. Marcolino MS, Oliveira JAQ, D'Agostino M, Ribeiro AL, Alkmim MBM, Novillo-Ortiz D. The Impact of mHealth Interventions: Systematic Review of Systematic Reviews. JMIR mHealth and uHealth. 2018;6(1):e23. doi: 10.2196/mhealth.8873. 29343463; PubMed Central PMCID: PMC5792697.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy