#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression


Autoři: Kristina Hasakova aff001;  Richard Reis aff002;  Marian Vician aff003;  Michal Zeman aff001;  Iveta Herichova aff001
Působiště autorů: Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic aff001;  First Surgery Department, University Hospital, Comenius University Bratislava, Bratislava, Slovak Republic aff002;  Fourth Surgery Department, University Hospital, Comenius University Bratislava, Bratislava, Slovak Republic aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224396

Souhrn

Colorectal cancer represents a leading cause of cancer death. MicroRNAs (miRNAs) are small non-coding RNA molecules that have been extensively studied in tumours, since changes in their levels can reveal patient prognosis. Cancer progression is also influenced by the circadian system whose functioning is based on the rhythmic expression of clock genes. Therefore, we performed macroarray screening of tumour and adjacent tissues in patients undergoing surgery for colorectal carcinoma. We identified 17 miRNAs showing expression that was more than 100 times higher in tumour tissue compared to adjacent tissue. From in silico analysis, miR-34a-5p was selected as showing a computer-predicted interaction with PER2. Real-time PCR revealed a negative correlation between expression of PER2 mRNA and miR-34a in patients with more advanced cancer stage. Expression of miR-34a was up-regulated in cancer tissue compared to adjacent tissue. High miR-34a expression was associated with better survival of patients. miR-34a showed lower expression levels in male patients with lymph node involvement, and a trend towards decreased expression in male patients with distant metastases. Male patients, but not female patients, with high expression of miR-34a and who were free of distant metastases and/or lymph node involvement showed better survival. Therefore, we proposed that expression of miR-34a was regulated in a sex-dependent manner and could be considered a marker of prognosis in earlier cancer stages in male patients.

Klíčová slova:

Carcinomas – Circadian oscillators – Circadian rhythms – Colorectal cancer – Lymph nodes – MicroRNAs – Polymerase chain reaction – Transcription factors


Zdroje

1. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66: 683–691. doi: 10.1136/gutjnl-2015-310912 26818619

2. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103: 2257–2261. doi: 10.1073/pnas.0510565103 16461460

3. Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech. 2017;10: 197–214. doi: 10.1242/dmm.027441 28250048

4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116: 281–297. doi: 10.1016/s0092-8674(04)00045-5 14744438

5. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19: 92–105. doi: 10.1101/gr.082701.108 18955434

6. Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1: 882–291. 14573789

7. Slaby O, Svoboda M, Fabian P, Smerdova D, Knoflickova D, Bednarikova M, et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. 2007;72: 397–402. doi: 10.1159/000113489 18196926

8. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, S. Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27: 2128–2136. doi: 10.1038/sj.onc.1210856 17968323

9. Xiong B, Cheng Y, Ma L, Zhang C. miR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol. 2013;42: 219–228. doi: 10.3892/ijo.2012.1707 23174819

10. Masuda T, Hayashi N, Kuroda Y, Ito S, Eguchi H, Mimori K. MicroRNAs as Biomarkers in Colorectal Cancer. Cancers (Basel). 2017;13: 9. pii: E124.

11. Bandrés E, Cubedo E, Agirre X, Malumbres R, Zárate R, Ramirez N, et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006;9: 5–29.

12. Chaix A, Zarrinpar A, Panda S. The circadian coordination of cell biology. J Cell Biol. 2016;215: 15–25. doi: 10.1083/jcb.201603076 27738003

13. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15: R271–277. doi: 10.1093/hmg/ddl207 16987893

14. Cordina-Duverger E, Menegaux F, Popa A, Rabstein S, Harth V, Pesch B, et al. Night shift work and breast cancer: a pooled analysis of population-based case-control studies with complete work history. Eur J Epidemiol. 2018;33: 369–379. doi: 10.1007/s10654-018-0368-x 29464445

15. Barul C, Richard H, Parent ME. Nightshift work and prostate cancer risk: results from the Canadian case-control study Am J Epidemiol. 2019; pii: kwz167.

16. Papantoniou K, Devore EE, Massa J, Strohmaier S, Vetter C, Yang L, et al. Rotating night shift work and colorectal cancer risk in the nurses' health studies. Int J Cancer. 2018;143: 2709–2717. doi: 10.1002/ijc.31655 29978466

17. Filipski E, Lévi F. Circadian disruption in experimental cancer processes. Integr Cancer Ther. 2009;8: 298–302. doi: 10.1177/1534735409352085 20042408

18. Hasakova K, Vician M, Reis R, Zeman M, Herichova I. Sex-dependent correlation between survival and expression of genes related to the circadian oscillator in patients with colorectal cancer. Chronobiol Int. 2018;35: 1423–1434. doi: 10.1080/07420528.2018.1488722 29953268

19. Fu L, Pelicano H, Liu J, Huang P, Lee C. The circadian gene period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002;111: 41–50. doi: 10.1016/s0092-8674(02)00961-3 12372299

20. Wood PA, Yang X, Taber A, Oh EY, Ansell C, Ayers SE. Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol Cancer Res. 2008;6: 1786–1793. doi: 10.1158/1541-7786.MCR-08-0196 19010825

21. Hua H, Wang Y, Wan C, Liu Y, Zhu B, Yang C, et al. Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci. 2006;97: 589–596. doi: 10.1111/j.1349-7006.2006.00225.x 16827798

22. Soták M, Polidarová L, Ergang P, Sumová A, Pácha J. An association between clock genes and clock-controlled cell cycle genes in murine colorectal tumors. Int J Cancer. 2013;132: 1032–1041. doi: 10.1002/ijc.27760 22865596

23. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP. MicroRNA modulation of circadian-clock period and entrainment. Neuron. 2007;54: 813–829. doi: 10.1016/j.neuron.2007.05.017 17553428

24. Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem. 2007;282: 25053–25066. doi: 10.1074/jbc.M700501200 17597072

25. Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB, et al. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts. Exp Cell Res. 2010;316: 3512–3521. doi: 10.1016/j.yexcr.2010.07.007 20633552

26. Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, et al. Integration of microRNA miR122 in hepatic circadian gene expression. Genes Dev. 2009;23: 1313–1326. doi: 10.1101/gad.1781009 19487572

27. Yan Y, Salazar TE, Dominguez JM, Nguyen DV, Li Calzi S, Bhatwadekar AD, et al. Dicer expression exhibits a tissue-specific diurnal pattern that is lost during aging and in diabetes. PLoS One. 2013;8: e80029. doi: 10.1371/journal.pone.0080029 24244599

28. Du NH, Arpat AB, De Matos M, Gatfield D. Micro-RNAs shape circadian hepatic gene expression on a transcriptome- wide scale. eLife. 2014;3: e02510. doi: 10.7554/eLife.02510 24867642

29. Nagel R, Clijsters L, Agami R. The miRNA-192/194 cluster regulates the Period gene family and the circadian clock. FEBS J. 2009;276: 5447–2455. doi: 10.1111/j.1742-4658.2009.07229.x 19682069

30. Han Y, Meng F, Venter J, Wu N, Wan Y, Standeford H. miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. J Hepatol. 2016;64: 1295–304. doi: 10.1016/j.jhep.2016.02.024 26923637

31. Agarwal V, Bell GW, Nam J, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4: e05005.

32. Balcells I, Cirera S, Busk PK. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol. 2011;11: 70. doi: 10.1186/1472-6750-11-70 21702990

33. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 2007;17: 1298–1307. doi: 10.1016/j.cub.2007.06.068 17656095

34. Agostini M, Knight RA. miR-34: from bench to bedside. Oncotarget. 2014;5: 872–881. doi: 10.18632/oncotarget.1825 24657911

35. Krajewska JB, Fichna J, Mosińska P. One step ahead: miRNA-34 in colon cancer-future diagnostic and therapeutic tool? Crit Rev Oncol Hematol. 2018;132: 1–8. doi: 10.1016/j.critrevonc.2018.09.006 30447913

36. Koturbash I, Zemp FJ, Kutanzi K, Luzhna L, Loree J, Kolb B, et al. Sex-specific microRNAome deregulation in the shielded bystander spleen of cranially exposed mice. Cell Cycle. 2008;7: 1658–1667. doi: 10.4161/cc.7.11.5981 18560276

37. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci. 2007;104: 15472–15477. doi: 10.1073/pnas.0707351104 17875987

38. Gao J, Li N, Dong Y, Li S, Xu L, Li X. MiR-34a-5p suppresses colorectal cancer metastasis and predicts recurrence in patients with stage II/III colorectal cancer. Oncogene. 2015;34: 4142–4152. doi: 10.1038/onc.2014.348 25362853

39. Zhang X, Ai F, Li X, Tian L, Wang X, Shen S, Liu F. MicroRNA-34a suppresses colorectal cancer metastasis by regulating Notch signaling. Oncol Lett. 2017;14: 2325–2333. doi: 10.3892/ol.2017.6444 28781671

40. Rapti SM, Kontos CK, Christodoulou S, Papadopoulos IN, Scorilas A. miR-34a overexpression predicts poor prognostic outcome in colorectal adenocarcinoma, independently of clinicopathological factors with established prognostic value. Clin Biochem. 2017;50: 918–924. doi: 10.1016/j.clinbiochem.2017.06.004 28624481

41. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447: 1130–1134. doi: 10.1038/nature05939 17554337

42. Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci. 2008;105: 13421–13426. doi: 10.1073/pnas.0801613105 18755897

43. Salzman DW, Nakamura K, Nallur S, Dookwah MT, Metheetrairut C, Slack FJ, et al. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun. 2016;7: 10954. doi: 10.1038/ncomms10954 26996824

44. Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY, et al. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal. 2011;4: ra71. doi: 10.1126/scisignal.2001744 22045851

45. Zeman M, Vician M, Monosikova J, Reis R, Herichova I. Deregulated expression of the per2 gene in human colorectal carcinoma. Mol Med Rep. 2008;1: 599–603. 21479457

46. Mazzoccoli G, Panza A, Valvano MR, Palumbo O, Carella M, Pazienza V, et al. Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int. 2011;28: 841–851. doi: 10.3109/07420528.2011.615182 22080729

47. Wang Y, Hua L, Lu C and Chen Z. Expression of circadian clock gene human Period2 (hPer2) in human colorectal carcinoma. World J Surg Oncol. 2011;9: 166. doi: 10.1186/1477-7819-9-166 22166120

48. Zhao G, Guo J, Li D, Jia C, Yin W, Sun R, et al. MicroRNA-34a suppresses cell proliferation by targeting LMTK3 in human breast cancer mcf-7 cell line. DNA Cell Biol. 2013;32: 699–707. doi: 10.1089/dna.2013.2130 24050776

49. Wang MJ, Zhang P, Li Y, Liu GH, Zhou B, Zhan L, et al. The quantitative analysis by stem-loop real-time PCR revealed the microRNA-34a, microRNA-155 and microRNA-200c overexpression in human colorectal cancer. Med Oncol. 2012;29: 3113–3118. doi: 10.1007/s12032-012-0241-9 22562822

50. Arndt GM, Dossey L, Cullen LM, Lai A, Druker R, Eisbacher M, et al. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer. BMC Cancer. 2009;9: 374. doi: 10.1186/1471-2407-9-374 19843336

51. Iacopetta B, Russo A, Bazan V, Dardanoni G, Gebbia N, Soussi T, et al. Functional categories of TP53 mutation in colorectal cancer: results of an International Collaborative Study. Ann Oncol. 2006;17: 842–847. doi: 10.1093/annonc/mdl035 16524972

52. Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, Götz U, Hermeking H. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle. 2011;10: 4256–4271. doi: 10.4161/cc.10.24.18552 22134354

53. Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124: 1853–1867. doi: 10.1172/JCI73531 24642471

54. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7: 2591–2600. doi: 10.4161/cc.7.16.6533 18719384

55. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, et al. Epigenetic silencing of MicroRNA-34b/c and B-cell translocation Gene 4 Is associated with CpG Island methylation in colorectal cancer. Cancer Res. 2008;68: 4123–4132. doi: 10.1158/0008-5472.CAN-08-0325 18519671

56. Siemens H, Neumann J, Jackstadt R, Mansmann U, Horst D, Kirchner T, et al. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and β-catenin predicts distant metastasis of colon cancer. Clin Cancer Res. 2013;19: 710–720. doi: 10.1158/1078-0432.CCR-12-1703 23243217


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#