Modulation of brain tumor risk by genetic SNPs in PARP1gene: Hospital based case control study
Autoři:
Asad ullah Khan aff001; Ishrat Mahjabeen aff001; Muhammad Arif Malik aff002; Muhammad Zahid Hussain aff003; Sarfraz Khan aff004; Mahmood Akhtar Kayani aff001
Působiště autorů:
Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
aff001; Department of Neurosciences, Brain Surgery Hospital, Rawalpindi, Pakistan
aff002; Department of Medicine, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
aff003; Department of Physiotherapy, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223882
Souhrn
PARP-1 gene plays an essential part in base excision repair pathway and its functional variations result in several types of cancer. In this study we have explored the effect of genetic variations in PARP-1 gene in brain tumorigenesis. This case control study comprised of 500 brain tumor cases along with 500 healthy controls. Three polymorphisms of PARP-1 gene, rs1136410 (Val762Ala), rs1805404 (Asp81Asp) and rs1805414 (Ala284Ala) were analyzed using AS-PCR method followed by DNA sequencing. Joint effect model, haplotype analysis and linkage disequilibrium of these polymorphisms was assessed using Haploview 4.2. In rs1136410 (Val762Ala) heterozygous mutant genotype (CT) was observed notably lower (OR: 0.44., 95% CI: 0.33–0.57., p<0.0001) in brain tumor patients compared to controls and ~2 fold increased frequency of homozygous mutant genotype (CC) was observed in brain tumor patients versus controls (OR: 1.51., 95%CI: 1.16–1.96, p = 0.001). In rs1805414 (Ala284Ala), frequency of heterozygous mutant genotype (CT) was observed lower (OR: 0.77., 95% CI: 0.60–0.99., p = 0.05) in patients versus controls. In rs1805404 (Asp81Asp), heterozygous mutant genotyping (CT) was observed lower in brain tumor patients compared with the healthy controls (OR: 0.63., 95% CI: 0.48–0.83., p = 0.001). However, homozygous mutant genotype (TT) was observed increased in patients compared to controls (OR: 1.41., 95% CI:1.07–1.85., p = 0.01). We assessed the fact that in combination the PARP-1 gene SNPs, rs1136410 (Val762Ala), rs1805414 (Ala284Ala) and rs1805404 (Asp81Asp) may increase the brain pathogenesis at least in Pakistani population.
Klíčová slova:
Alleles – Carcinogenesis – Glioma – Haplotypes – Linkage disequilibrium – Polymerase chain reaction – Variant genotypes – Meningioma
Zdroje
1. Hill JR, Kuriyama N, Kuriyama H, Israel MA. Molecular genetics of brain tumors. Archives of neurology. 1999 Apr 1;56(4):439–41. doi: 10.1001/archneur.56.4.439 10199332
2. KK K, Rajan MS, Hegde K, Koshy S, Shenoy A. A comprehensive review in brain tumor. International Journal of Pharmaceutical, Chemical and Biological Science. 2013 Feb 3; 3 (4):1165–1171.
3. Crump C, Sundquist J, Sieh W, Winkleby MA, Sundquist K. Perinatal and familial risk factors for brain tumors in childhood through young adulthood. Cancer research. 2015 1;75(3):576–83. doi: 10.1158/0008-5472.CAN-14-2285 25511376
4. Bohr VA, Ottersen OP, Tønjum T. Genome instability and DNA repair in brain, ageing and neurological disease. Neuroscience. 2007; 145 (4):1183–6. doi: 10.1016/j.neuroscience.2007.03.015 17400394.
5. Bethke L, Webb E, Murray A, Schoemaker M, Johansen C, Christensen HC, et al. Comprehensive analysis of the role of DNA repair gene polymorphisms on risk of glioma. Human molecular genetics. 2007 Nov 29;17(6):800–5. doi: 10.1093/hmg/ddm351 18048407.
6. Schreiber V, Dantzer F, Ame JC, De Murcia G. Poly (ADP-ribose): novel functions for an old molecule. Nature reviews Molecular cell biology. 2006 Jul;7(7):517. doi: 10.1038/nrm1963 16829982
7. Kim MY, Zhang T, Kraus WL. Poly (ADP-ribosyl) ation by PARP-1:PAR-laying’NAD+ into a nuclear signal. Genes & development. 2005 Sep 1;19(17):1951–67. doi: 10.1101/gad.1331805 16140981.
8. Liu HP, Lin WY, Wu BT, Liu SH, Wang WF, Tsai CH, et al. Evaluation of the poly (ADP‐ribose) polymerase‐1 gene variants in Alzheimer’s disease. Journal of clinical laboratory analysis. 2010 Jan 1;24(3):182–6. doi: 10.1002/jcla.20379 20486200.
9. Yosunkaya E, Kucukyuruk B, Onaran I, Gurel CB, Uzan M, Kanigur-Sultuybek G. Glioma risk associates with polymorphisms of DNA repair genes, XRCC1 and PARP1. British journal of neurosurgery. 2010 Oct 1;24(5):561–5. doi: 10.3109/02688697.2010.489655 20868244.
10. Alanazi M, Pathan AA, Shaik JP, Al Amri A, Parine NR. The C Allele of a synonymous SNP (rs1805414, Ala284Ala) in PARP1 is a risk factor for susceptibility to breast cancer in Saudi patients. Asian Pacific Journal of Cancer Prevention. 2013;14(5):3051–6. doi: 10.7314/apjcp.2013.14.5.3051 23803078.
11. Berndt SI, Huang WY, Fallin MD, Helzlsouer KJ, Platz EA, Weissfeld JL, et al. Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer research. 2007 Feb 1;67(3):1395–404. doi: 10.1158/0008-5472.CAN-06-1390 17283177.
12. Yosunkaya E, Kucukyuruk B, Onaran I, Gurel CB, Uzan M, Kanigur-Sultuybek G. Glioma risk associates with polymorphisms of DNA repair genes, XRCC1 and PARP1. British journal of neurosurgery. 2010 Oct 1;24(5):561–5. doi: 10.3109/02688697.2010.489655 20868244.
13. Li C, Hu Z, Lu J, Liu Z, Wang LE, El‐Naggar AK,et al. Genetic polymorphisms in DNA base‐excision repair genes ADPRT, XRCC1, and APE1 and the risk of squamous cell carcinoma of the head and neck. Cancer. 2007 Aug 15;110(4):867–75. doi: 10.1002/cncr.22861 17614107.
14. Qin Q, Lu J, Zhu H, Xu L, Cheng H, Zhan L,et al. PARP-1 Val762Ala polymorphism and risk of cancer: a meta-analysis based on 39 case-control studies. PloS one. 2014 May 22;9(5):e98022. doi: 10.1371/journal.pone.0098022 24853559
15. Lockett KL, Hall MC, Xu J, Zheng SL, Berwick M, Chuang SC,et al. The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer research. 2004 Sep 1;64(17):6344–8. doi: 10.1158/0008-5472.CAN-04-0338 15342424.
16. Chiang FY, Wu CW, Hsiao PJ, Kuo WR, Lee KW, Lin JC,et al. Association between polymorphisms in DNA base excision repair genes XRCC1, APE1, and ADPRT and differentiated thyroid carcinoma. Clinical Cancer Research. 2008 Sep 15;14(18):5919–24. doi: 10.1158/1078-0432.CCR-08-0906 18779313
17. Hur JW, Sung YK, Shin HD, Park BL, Cheong HS, Bae SC. Poly (ADP-ribose) polymerase (PARP) polymorphisms associated with nephritis and arthritis in systemic lupus erythematosus. Rheumatology. 2006 Feb 3;45(6):711–7. doi: 10.1093/rheumatology/kei262 16461442.
18. Cottet F, Blanché H, Verasdonck P, Le Gall I, Schächter F, Bürkle A,et al. New polymorphisms in the human poly (ADP-ribose) polymerase-1 coding sequence: lack of association with longevity or with increased cellular poly (ADP-ribosyl) ation capacity. Journal of molecular medicine. 2000 Oct 1;78(8):431–40. 11097112.
19. Berndt SI, Huang WY, Fallin MD, Helzlsouer KJ, Platz EA, Weissfeld JL et al. Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer research. 2007; 67(3):1395–404. doi: 10.1158/0008-5472.CAN-06-1390 17283177
20. Li C, Liu Z, Wang LE, Strom SS, Lee JE, Gershenwald JE,et al. Genetic variants of the ADPRT, XRCC1 and APE1 genes and risk of cutaneous melanoma. Carcinogenesis. 2006 Apr 18;27(9):1894–901. doi: 10.1093/carcin/bgl042 16621887.
21. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ: British Medical Journal. 2003 Sep 6;327(7414):557. doi: 10.1136/bmj.327.7414.557 12958120
22. Keller A, Harz C, Matzas M, Meder B, Katus HA, Ludwig N,et al. Identification of novel SNPs in glioblastoma using targeted resequencing. PloS one. 2011 Jun 10;6(6):e18158. doi: 10.1371/journal.pone.0018158 21695249
23. Ogino S, Stampfer M. Lifestyle factors and microsatellite instability in colorectal cancer: the evolving field of molecular pathological epidemiology. J Natl Cancer Inst. 2010; 102(6):365–7. doi: 10.1093/jnci/djq031 20208016
24. Milani L, Gupta M, Andersen M, Dhar S, Fryknäs M, Isaksson A,et al. Allelic imbalance in gene expression as a guide to cis-acting regulatory single nucleotide polymorphisms in cancer cells. Nucleic acids research. 2007 Jan 31;35(5):e34. doi: 10.1093/nar/gkl1152 17267408
25. Shiokawa M, Masutani M, Fujihara H, Ueki K, Nishikawa R, Sugimura T,et al. Genetic alteration of poly (ADP-ribose) polymerase-1 in human germ cell tumors. Japanese journal of clinical oncology. 2005 Feb 1;35(2):97–102. doi: 10.1093/jjco/hyi028 15709096
26. Ali AA, Timinszky G, Arribas-Bosacoma R, Kozlowski M, Hassa PO, Hassler M,et al. The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nature Structural and Molecular Biology. 2012 Jul;19(7):685. doi: 10.1038/nsmb.2335 22683995
27. Kiuru A, Lindholm C, Heinävaara S, Ilus T, Jokinen P, Haapasalo H,et al. XRCC1 and XRCC3 variants and risk of glioma and meningioma. Journal of neuro-oncology. 2008 Jun 1;88(2):13542. doi: 10.1007/s11060-008-9556-y 18330515.
28. Wang LE, Bondy ML, Shen H, El-Zein R, Aldape K, Cao Y,et al. Polymorphisms of DNA repair genes and risk of glioma. Cancer research. 2004 Aug 15;64(16):5560–3. doi: 10.1158/0008-5472.CAN-03-2181 15313891.
29. Malmer BS. Feychting M, Lönn S, Lindström S, Grönberg H, Ahlbom A, et al. Genetic variation in p53 and ATM haplotypes and risk of glioma and meningioma. J Neurooncol. 2007;82(3):229–37. doi: 10.1007/s11060-006-9275-1 17151932
30. Malmer BS, Feychting M, Lönn S, Lindström S, Grönberg H, Ahlbom A,et al. Genetic variation in p53 and ATM haplotypes and risk of glioma and meningioma. Journal of neuro-oncology. 2007 May 1;82(3): 229–37. doi: 10.1007/s11060-006-9275-1 17151932.
31. Juratli TA, Kirsch M, Robel K, Soucek S, Geiger K, von Kummeret al. IDH mutations as an early and consistent marker in low-grade astrocytomas WHO grade II and their consecutive secondary high-grade gliomas. Journal of neuro-oncology. 2012 Jul 1;108(3):403–10. doi: 10.1007/s11060-012-0844-1 22410704
32. Thota B, Shukla SK, Srividya MR, Shwetha SD, Arivazhagan A, Thennarasu K,et al. IDH1 mutations in diffusely infiltrating astrocytomas: grade specificity, association with protein expression, and clinical relevance. American journal of clinical pathology. 2012 Aug 1;138(2):177–84. doi: 10.1309/AJCPZOIY3WY4KIKE 22904127
33. Lewandowska MA, Furtak J, Szylberg T, Roszkowski K, Windorbska W, Rytlewska J,et al. An analysis of the prognostic value of IDH1 (isocitrate dehydrogenase 1) mutation in Polish glioma patients. Molecular diagnosis & therapy. 2014 Feb 1;18(1):45–53. doi: 10.1007/s40291-013-0050-7 23934769
34. Chiang FY, Wu CW, Hsiao PJ, Kuo WR, Lee KW, Lin JC,et al. Association between polymorphisms in DNA base excision repair genes XRCC1, APE1, and ADPRT and differentiated thyroid carcinoma. Clinical Cancer Research. 2008 Sep 15;14(18):5919–24. doi: 10.1158/1078-0432.CCR-08-0906 18779313
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy