Nitrogen nutrition is a key modulator of the sugar and organic acid content in citrus fruit
Autoři:
Ling Liao aff001; Tiantian Dong aff001; Xia Qiu aff001; Yi Rong aff001; Zhihui Wang aff001; Jin Zhu aff003
Působiště autorů:
College of Horticulture, Sichuan Agricultural University, Chengdu, China
aff001; Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
aff002; Sichuan Provincial Agricultural Department, Chengdu, China
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223356
Souhrn
‘Huangguogan’ (Citrus reticulata × C. sinensis) is a new cultivar of mandarin citrus in China, and the research on fertilization of ‘Huangguogan’ is very limited. In this study, the effect of N fertilization on ‘Huangguogan’ fruit quality was determined at ripening. Sugars (sucrose, fructose, and glucose), organic acids (pyruvic, oxalic, citric acid, etc.), and vitamin components were measured at six stages of fruit development, and eight enzymes related to the glycolytic and Krebs cycle were assessed. The 1.81 kg N y-1 treatment group showed the highest total soluble solids concentration and total soluble solids/titratable acidity ratio but the lowest titratable acidity (acid content) at ripening, while the N1 treatment (0 kg N y-1) showed the opposite trend. Sucrose and citric acid accumulated to the largest extent during fruit development. Sucrose and ascorbic acid content increased (8.46 to 50.97 mg g-1 and 8.16 to 27.39 mg g-1, respectively), while citric acid content decreased (90.81 to 0.02 mg g-1). Aconitase was the key enzyme responsible for the observed changes in citric acid. The N concentrations in ripening fruit ranged from 2.25% to 4.15%. Curve estimation and principal component analysis revealed that fruit N was positively correlated with the sugars and vitamin components and negatively correlated with the organic acids. The accumulation of these metabolites seemed closely related to the dynamic changes in fruit N concentration at the five N levels tested. In conclusion, we suggest that the 1.81 kg N y-1 treatment represents the most suitable N fertilizer treatment for ‘Huangguogan’ citrus fruit.
Klíčová slova:
Citrus – Enzyme metabolism – Fertilizers – Fruits – Sucrose – vitamin C – Organic acids – Citric acid
Zdroje
1. Zhou Y., He W., Zheng W., Tan Q., Xie Z., Zheng C., et al. Fruit Sugar and Organic Acid Were Significantly Related to Fruit Mg of Six Citrus Cultivars. Food Chem. 2018;19(4):955.
2. Batista-Silva W., Nascimento V.L., Medeiros D.B., Nunes-Nesi A., Ribeiro D.M., Zsögön A, et al. Modifications in organic acid profiles during fruit development and ripening: Correlation or Causation? Front. plant sci. 2018;9:1689. doi: 10.3389/fpls.2018.01689 30524461
3. Lowell C.A., Tomlinson P.T., Koch K.E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. Plant physiol. 1989;90(4):1394–1402. doi: 10.1104/pp.90.4.1394 16666942
4. Tadeo F.R., Cercós M., Colmenero‐Flores J.M., Iglesias D.J., Naranjo M.A., Ríos G, et al. Molecular Physiology of Development and Quality of Citrus. Adv. Bot. Res. 2008;47(12):147–223.
5. Chen M., Jiang Q., Yin X.R., Lin Q., Chen J.Y., Allan A.C., et al. Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Scientia Hortic.2012;147(4):118–125.
6. Beauvoit B., Belouah I., Bertin N., Cakpo C.B., Colombié S., Dai Z., et al. Putting primary metabolism into perspective to obtain better fruits. Ann. bot. 2018;122(1):1–21. doi: 10.1093/aob/mcy057 29718072
7. Kelebek H., Selli S. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice. J. Sci. Food Agr. 2011;91(10):1855–1862.
8. Tang M., Bie Z.L., Wu M.Z., Yi H.P., Feng J.X. Changes in organic acids and acid metabolism enzymes in melon fruit during development. Scientia Hortic. 2010;123(3):360–365.
9. Wu B., Génard M., Lobit P., Longuenesse J., Lescourret F., Habib R., et al. Analysis of citrate accumulation during peach fruit development via a model approach. J Exp. Bot. 2007;58(10):2583. doi: 10.1093/jxb/erm126 17597099
10. Albertini M.V., Carcouet E., Pailly O., Gambotti C., Luro F., Berti L. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. J. Agr. Food Chem. 2006;54(21):8335–8339.
11. Burger Y., Shen S., Petreikov M., Schaffer A.A., Katzir N., Paris H.S.,. The contribution of sucrose to total sugar content in melons. Cucurbitaceae Eucarpia Meeting on Cucurbit Breeding and Genetics 2000.
12. Jaleel C.A., Kishorekumar A., Manivannan P., Sankar B., Gomathinayagam M., Gopi R., et al. Alterations in carbohydrate metabolism and enhancement in tuber production in white yam (Dioscorea rotundata Poir.) under triadimefon and hexaconazole applications. Plant Growth Regul. 2007;53(1):7–16.
13. Moscatello S., Famiani F., Proietti S., Farinelli D., Battistelli A. Sucrose synthase dominates carbohydrate metabolism and relative growth rate in growing kiwifruit (Actinidia deliciosa, cv Hayward). Scientia Hortic. 2011;128(3):197–205.
14. Zampini M., Wantling E., Phillips N. Spence Multisensory flavor perception: Assessing the influence of fruit acids and color cues on the perception of fruit-flavored beverages. Food Qual. Prefer. 2008;19(3):335–343.
15. Silva B M., Andrade P.B., Gonçalves A.C., Seabra R.M., Oliveira M.B., Ferreira M.A., et al. Influence of jam processing upon the contents of phenolics, organic acids and free amino acids in quince fruit (Cydonia oblonga Miller). Eur. Food Res. Technol.2004;218(4):385–389.
16. Famiani F., Cultrera N.A., Casulli V., Proietti P., Standardi A., Chen Z.H., et al. Phosphoenolpyruvate carboxykinase and its potential role in the catabolism of organic acids in the flesh of soft fruit during ripening. J. Exp. Bot. 2005;56(421):2959–2969. doi: 10.1093/jxb/eri293 16216845
17. Sadka A., Dahan E., Cohen L., Marsh K.B. Aconitase activity and expression during the development of lemon fruit. Physiol. Plantarum. 2010;108(3):255–262.
18. Nunes-Nesi A., Fernie A.R., Stitt M. Metabolic and Signaling Aspects Underpinning the Regulation of Plant Carbon Nitrogen Interactions. Mol. Plant. 2010;3(6):973–996. doi: 10.1093/mp/ssq049 20926550
19. Chebrolu K.K., Jayaprakasha G.K., Yoo K.S., Jifon J.L., Patil B.S. An improved sample preparation method for quantification of ascorbic acid and dehydroascorbic acid by HPLC. Food Sci. Tech.2012;47(2):440–449.
20. Zerdin K., Rooney M.L., Vermuë J. The vitamin C content of orange juice packed in an oxygen scavenger material. Food Chem. 2003;82(3):387–395.
21. Davey M.W., Montagu M.V., Inzé D., Sanmartin M., Kanellis A., Smirnoff N., et al. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agr. 2010;80(7):825–860.
22. Valente A., Sanches-Silva A., Albuquerque T.G., Costa H. Development of an orange juice in-house reference material and its application to guarantee the quality of vitamin C determination in fruits, juices and fruit pulps. Food Chem. 2014;154(3):71–76.
23. Zhong C., Young T.E., Jun L., Su-Chih C., Gallie D.R., Proceedings of the National Academy of Sciences of the United States of America. Increasing vitamin C content of plants through enhanced ascorbate recycling. P. Natl. Acad. Sci. USA 2003;100(6):3525–3530.
24. Gang M., Zhang L., Katoa M., Asai T., Nishikawa F., Ikoma Y., et al. Effect of electrostatic atomization on ascorbate metabolism in postharvest broccoli. Postharvest Biology and Technology 2012;74(4):19–25.
25. Gang M., Zhang L., Setiawan C.K., Yamawaki K., Asai T., Nishikawa F., et al. Effect of red and blue LED light irradiation on ascorbate content and expression of genes related to ascorbate metabolism in postharvest broccoli. Postharvest Biol. Tec. 2014;94(7):97–103.
26. Muñozhuerta R.F, Guevaragonzalez R.G., Contrerasmedina L.M., Torrespacheco I., Pradoolivarez J., Ocampovelazquez R. A Review of Methods for Sensing the Nitrogen Status in Plants: Advantages, Disadvantages and Recent Advances. Sensors 2013;13(8):10823–10843. doi: 10.3390/s130810823 23959242
27. Weinbaum S.A., Brown P.H., Johnson R.S.Application of selected macronutrients (N, K) in deciduous orchards: Physiological and agrotechnical perspectives. Acta Horticulturae 2002;594(594):59–64.
28. Lee S.K., Kader A.A. Technology. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Tec. 2000;20(3):207–209.
29. Alcobendas R., Mirás-Avalos J.M., Alarcón J.J., Nicolás E. Effects of irrigation and fruit position on size, colour, firmness and sugar contents of fruits in a mid-late maturing peach cultivar. Sci. Hortic.2013;164(164):340–347.
30. Xiong B., Ye S., Qiu X., Liao L., Sun G., Luo J., et al. Transcriptome Analyses of Two Citrus Cultivars (Shiranuhi and Huangguogan) in Seedling Etiolation. Sci. Rep. 2017;7. doi: 10.1038/s41598-017-00035-9
31. Weinert T.L., Thompson T.L., White S.A., Maurer M.A. Nitrogen fertigation of young navel oranges: Growth, N status, and uptake of fertilizer N. HortScience. 2002;37(2):334–337.
32. Morgan K., Scholberg J., Obreza T., Wheaton T. Size, biomass, and nitrogen relationships with sweet orange tree growth. J. Am. Soc. Hortic. Sci. 2006;131(1):149–156.
33. Alva A.K., Mattos J.D., Quaggio J.A. Advances in nitrogen fertigation of citrus. Journal of Crop Improvement. 2008;22(1):121–146.
34. Yan Q.Q., Liao F.L., Wang Z.H., Xiong B., Wang X.F., Fan Q.Q., et al. Sugar-increasing and acid-decreasing method for citrus cultivar Shimian Huangguogan. 2012.
35. Li Q.N., Cao S.Y., GU X.J., Xiong B., Ye S., Qiu X., et al. Study on nitrogen absorption and operation mechanism of citrus tree in two fertilization modes. Acta Agriculturae Zhejiangensis. 2016;28(1):51–55.
36. Jiang N., Jin L.F., Teixeira D.S.J.A., Islam M.Z., Gao H.W., Liu Y.Z., et al. Activities of enzymes directly related with sucrose and citric acid metabolism in citrus fruit in response to soil plastic film mulch. Sci. Hortic. 2014;168:73–80.
37. Jiang N., Gao H.W., Jin L.F., Liu Y.Z., Peng S. The Impact of Plastic Film Mulching on Citrus Fruit Sugar Accumulation and Sucrose Metabolism-Related Enzymes. Scientia Agricultura Sinica 2013;2.
38. Li H.S. Expermental Principle and Technology of Plant Biology and Biochemistry [M]. 1999.
39. Enriqueta A., Rodrigo M.J., Lorenzo Z. Differential transcriptional regulation of L-ascorbic acid content in peel and pulp of citrus fruits during development and maturation. Planta 2014;239(5):1113–1128. doi: 10.1007/s00425-014-2044-z 24567029
40. Badr M A., Abouhussein S.D., Eltohamy W.A. Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region. Agricultural Water Management 2016;169:90–97.
41. Alva A., Mattos D., Quaggio J.A. Advances in Nitrogen Fertigation of Citrus. Journal of Crop Improvement 2008;22(1):121–146.
42. Warner J., Zhang T.Q., Hao X. Effects of nitrogen fertilization on fruit yield and quality of processing tomatoes. Can. J. Plant Sci. 2004;84(3):865–871.
43. Ferrante A., Spinardi A., Maggiore T., Testoni A., Gallina P.M. Effect of nitrogen fertilisation levels on melon fruit quality at the harvest time and during storage. J. Sci. Food Agr. 2010;88(4):707–713.
44. Ltd M. H. Increasing yield and fruit quality of 'Sayer' date palm with application of optimum levels of nitrogen, phosphorus and potassium. IV International Date Palm Conference 2010.
45. Wen L., Zhang M., Shu HJ. The physiological effects of nitrogen on fruit trees. 2002.
46. Chapman H.D. The mineral nutrition of citrus. 1968.
47. Papp J. Effect of nitrogen dressings to Jonathan apple trees in a long-term experiment. International Journal of Horticultural Science 2000.
48. Kader A.A. Agriculture. Flavor quality of fruits and vegetables. J. Sci. Food Agr.2008;88(11):1863–1868.
49. Xue-Ren Y., Allan A.C., Kun-Song C., Ferguson I.B. Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol. 2010;153(3):1280–1292. doi: 10.1104/pp.110.157081 20457803
50. Liu Q., Liu Y.Z., Xiong J.J., Deng X.X. Difference of a citrus late-ripening mutant (Citrus sinensis) from its parental line in sugar and acid metabolism at the fruit ripening stage. Science in China Series C Life Sciences 2007;50(4):511–517. doi: 10.1007/s11427-007-0063-8 17653673
51. Quaggio J.A., Mattos D., Cantarella H. Fruit yield and quality of sweet oranges affected by nitrogen, phosphorus and potassium fertilization in tropical soils. Fruits 2006;61(61):págs. 293–302.
52. Cantarella H., Mattos D., Quaggio J.A., Rigolin A.T. Fruit yield of Valencia sweet orange fertilized with different N sources and the loss of applied N. Nutr. Cycl. Agroecosys.2003;67(3):215–223.
53. Alva A K., Paramasivam S., Obreza T.A., Schumann A.W. Nitrogen best management practice for citrus trees: I. Fruit yield, quality, and leaf nutritional status. Scientia Hortic.2006;109(3):223–233.
54. Malhi S.S., Johnson E.N., Hall L.M., May W.E., Phelps S., Nybo B. Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina sativa. Can. J. Soil Sci. 2015;94(1):35–47.
55. Meng W., Li G., Li W., Jia L., Ming L., Jiang C., et al. Nitrogen Fertilizer Deep Placement for Increased Grain Yield and Nitrogen Recovery Efficiency in Rice Grown in Subtropical China. Front. Plant Sci. 2017;8:1227. doi: 10.3389/fpls.2017.01227 28744302
56. Dordas C. Nitrogen nutrition index and leaf chlorophyll concentration and its relationship with nitrogen use efficiency in barley (Hordeum vulgare L.). J. Plant Nutr.2017;40(8):1190–1203.
57. Zhang Y., Hu C.X., Tan Q.L., Zheng C.S., Gui H.P., Zeng W.N., et al. Plant nutrition status, yield and quality of satsuma mandarin (Citrus unshiu Marc.) under soil application of Fe-EDDHA and combination with zinc and manganese in calcareous soil. Scientia Hortic.2014;174(174):46–53.
58. Schaller R.G., Schnitzler W.H. Nitrogen nutrition and flavour compounds of carrots (Daucus carota L) cultivated in Mitscherlich pots. Journal of the Science of Food & Agriculture. 2000;80(1):49–56.
59. Yamaki Y.T. Seasonal changes in the organic acids in juice of citrus fruits. Engei Gakkai zasshi 1990;58(4):895–898.
60. Etienne A., Génard M., Lobit P., Mbeguiéambéguié D., Bugaud C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot.2013;64(6):1451–1469. doi: 10.1093/jxb/ert035 23408829
61. Jakopic J., Veberic R., Zupancic K., Štampar F. Influence of Nitrogen on the Contents of Carbohydrates and Organic Acids in Apples (Malus domestica Borkh.) cv. 'Golden Delicious'. Eur. J. Hortic.Sci.2007;72(2):66–72.
62. Qiong L., Chengyang W., Wencheng D., Qing J., Dengliang W., Shaojia L., et al. Transcriptome and metabolome analyses of sugar and organic acid metabolism in Ponkan (Citrus reticulata) fruit during fruit maturation. Gene 2015;554(1):64–74. doi: 10.1016/j.gene.2014.10.025 25455100
63. Jiang N., Jin L.F., Teixeira D.S.J.A., Islam M.Z., Gao H.W., Liu Y.Z., et al. Activities of enzymes directly related with sucrose and citric acid metabolism in citrus fruit in response to soil plastic film mulch. Scientia Horticulturae. Sci.Hortic. 2014;168(3):73–80.
64. Cercós M., Soler G., Iglesias D.J., Gadea J., Forment J., Talón M. Global Analysis of Gene Expression During Development and Ripening of Citrus Fruit Flesh. A Proposed Mechanism for Citric Acid Utilization. Plant Mol. Biol. 2006;62(4–5):513–527. 16897468
65. Sadka A., Dahan E., Cohen L., Marsh K.B. Aconitase activity and expression during the development of lemon fruit. Physiol. Plantarum 2010;108(3):255–262.
66. Ming C., Xie X., Lin Q., Chen J., Grierson D., Yin X., et al. Differential Expression of Organic Acid Degradation-Related Genes During Fruit Development of Navel Oranges (Citrus sinensis) in Two Habitats. Plant Mol. Biol. Rep. 2013;31(5):1131–1140.
67. Canel C., Bailey-Serres J.N., Roose M.L. Molecular characterization of the mitochondrial citrate synthase gene of an acidless pummelo (Citrus maxima). Plant Mol. Biol. 1996;31(1):143–147. doi: 10.1007/bf00020613 8704147
68. Magwaza L.S., Opara U.L., Cronje P.J.R., Landahl S., Terry L.A. Canopy position affects rind biochemical profile of ‘Nules Clementine’ mandarin fruit during postharvest storage. Postharvest Biol. Tec. 2013;86(86):300–308.
69. Fotopoulos V., De Tullio M.C., Barnes J., Kanellis A.K. Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. J. Exp. Bot. 2008;59(4):729. doi: 10.1093/jxb/erm359 18349048
70. Magwaza L.S, Mditshwa A., Tesfay S.Z., Opara U.L. An overview of preharvest factors affecting vitamin C content of citrus fruit. Sci.Hortic. 2017;216:12–21.
71. Wassel A.H., Ahmed F.F., Ragab M.A., Ragab M.M. Response of balady mandarin trees to drip irrigation and nitrogen fertigation II- Effect of nitrogen fertigation and drip irrigation on fruit setting, number and quality of fruits of Balady mandarin trees (Citrus reticulata). 8th African Crop Science Society Conference 2007: 513–522.
72. ElSaida S.A. Studies on NPK fertigation on Balady mandarin trees in sandy soil. Bulletin of Faculty of Agriculture, University of Cairo 2006, 57(2): 365.
73. Nagy Steven. Vitamin C contents of citrus fruit and their products: a review. J. Agric. Food Chem. 1980;28(1):8–18. doi: 10.1021/jf60227a026 7358939
74. Shen J., Li C., Mi G., Li L., Yuan L., Jiang R., et al. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J. Exp. Bot. 2013;64(5):1181–1192. doi: 10.1093/jxb/ers342 23255279
75. Liang B., Yang X., Murphy D.V., He X., Zhou J. Fate of (15) N-labeled fertilizer in soils under dryland agriculture;after 19 years of different fertilizations. Biol. Fert. Soils 2013;49(8):977–986.
76. Takebe M., Okazaki K., Oka N., Karasawa T. Nitrogen uptake rate with compost application and its effect on the quality of Japanese radish (Raphanus sativus L.) and sweet corn (Zea mays L.). Journal of the Science of Soil and Manure 2010;81(1):23–30.
77. Zhao Z.Z., Zhang S.L., Liu S.T., Chen J.W., Tao J. Effects of extra nitrogenous fertilizer on sugar accumulation in juice sacs of satsuma mandarin fruit. Acta Agriculturae Nucleatae Sinica 2003;17(2):119–122.
78. Komatsu A., Takanokura Y., Moriguchi T., Omura M., Akihama T.Differential expression of three sucrose-phosphate synthase isoforms during sucrose accumulation in citrus fruits (Citrus unshiu Marc.). Plant Sci. 1999;140(2):169–178.
79. Li P., Ma M., Liu R. Management of water and nitrogen for controlling soil nitrate accumulation in pepper. International Conference on Remote Sensing. IEEE, 2011.
80. Mozafar A. Nitrogen fertilizers and the amount of vitamins in plants: A review. J. Plant Nutr. 1993;16(12):2479–2506.
81. Motosugi H., Lin R., Sugiura A. Secondary growth and flowering of summer-pruned 'Kyoho' grapevines as affected by different levels of nitrogen. Acta Horticulturae 1990;(279):585–597.
82. Obreza T.A, Rouse R.E. Fertilizer effects on early growth and yield of 'Hamlin' orange trees. Hortscience A Publication of the American Society for Horticultural Science 1993;28(2):111–114.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Antibiotika na nachlazení nezabírají! Jak můžeme zpomalit šíření rezistence?
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy