Evaluation of the bacterial ocular surface microbiome in clinically normal cats before and after treatment with topical erythromycin
Autoři:
Joshua E. Darden aff001; Erin M. Scott aff001; Carolyn Arnold aff002; Elizabeth M. Scallan aff001; Bradley T. Simon aff001; Jan S. Suchodolski aff001
Působiště autorů:
Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
aff001; Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223859
Souhrn
The ocular surface microbiome of veterinary species has not been thoroughly characterized using next generation sequencing. Furthermore, alterations in the feline ocular surface microbiome over time or following topical antibiotic treatment are unknown. Aims of this study were to further characterize the ocular surface microbiome of healthy cats and to identify whether there are microbial community changes over time and following topical antibiotic use. Twenty-four eyes from twelve adult, research-bred, female spayed domestic shorthaired cats were evaluated. Erythromycin ophthalmic ointment (0.5%) was applied to the ocular surface of one randomly assigned eye per cat three times daily for 7 days, while the fellow eye served as an untreated control. The ocular surface was sampled by swabbing the inferior conjunctival fornix of both eyes prior to initiating treatment (day 0), after 1 week of treatment (day 7), and 4 weeks after concluding treatment (day 35). Genomic DNA was extracted from the swabs and sequenced using primers that target the V4 region of bacterial 16S rRNA genes. At baseline, the most common bacterial phyla identified were Proteobacteria (42.4%), Firmicutes (30.0%), Actinobacteria (15.6%), and Bacteroidetes (8.1%). The most abundant bacterial families sequenced were Corynebacteriaceae (7.8%), Helicobacteraceae (7.5%), Moraxellaceae (6.1%), and Comamonadaceae (5.6%). Alpha and beta diversity measurements were largely unchanged in both treatment and control eyes over time. However, univariate and linear discriminant analyses revealed significant and similar changes in the abundance of some bacterial taxa over time in both treatment and control eyes. Overall, the feline ocular surface microbiome remained stable over time and following topical antibiotic therapy.
Klíčová slova:
Antibiotics – Bacteria – Cats – Eyes – Microbiome – Ophthalmology – Species diversity – Burkholderia
Zdroje
1. Gerding PA, Kakoma I. Microbiology of the canine and feline eye. Vet Clin North Am Small Anim Pract. 1990; 20(3): 615–625. doi: 10.1016/s0195-5616(90)50053-4 2194350
2. Büttner JN, Schneider M, Csokai J, Müller E, Eule JC. Microbiota of the conjunctival sac of 120 healthy cats. Vet Ophthalmol. 2018; https://doi.org/10.1111/vop.12598 30095211
3. Espínolaz MB, Lilenbaum W. Prevalence of bacteria in the conjunctival sac and on the eyelid margin of clinically normal cats. J Small Anim Pract. 1996; 37(8): 364–366. doi: 10.1111/j.1748-5827.1996.tb02415.x 8872935
4. McDermott AM. Antimicrobial compounds in tears. Exp Eye Res. 2013; 117: 53–61. doi: 10.1016/j.exer.2013.07.014 23880529
5. Gilger BC. Immunology of the ocular surface. Vet Clin North Am Small Anim Pract. 2008; 38(2): 223–231. doi: 10.1016/j.cvsm.2007.11.004 18299004
6. Cavuoto KM, Mendez R, Miller D, Galor A, Banerjee S. Effect of clinical parameters on the ocular surface microbiome in children and adults. Clin Ophthalmol. 2018; 12: 1189–1197. doi: 10.2147/OPTH.S166547 30013312
7. Dorn ES, Tress B, Suchodolski JS, Nisar T, Ravindran P, Weber K, et al. Bacterial microbiome in the nose of healthy cats and in cats with nasal disease. PLoS One. 2017; 12(6): https://doi.org/10.1371/journal.pone.0180299 28662139
8. Graham JE, Moore JE, Jiru X, Moore JE, Goodall EA, Dooley JS, et al. Ocular pathogen or commensal: a PCR-based study of surface bacterial flora in normal and dry eyes. Invest Ophthalmol Vis Sci. 2007; 48(12): 5616–5623. doi: 10.1167/iovs.07-0588 18055811
9. Isaiah A, Hoffmann AR, Kelley R, Mundell P, Steiner JM, Suchodolski JS. Characterization of the nasal and oral microbiota of detection dogs. PLoS One. 2017; 12(9): https://doi.org/10.1371/journal.pone.0184899 28934260
10. Kugadas A, Gadjeva M. Impact of microbiome on ocular health. Ocul Surf. 2016; 14(3): 342–349. doi: 10.1016/j.jtos.2016.04.004 27189865
11. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016; 8(1): https://doi.org/10.1186/s13073-016-0294-z 27074706
12. Lee SH, Oh DH, Jung JY, Kim JC, Jeon CO. Comparative ocular microbial communities in humans with and without blepharitis. Invest Ophthalmol Vis Sci. 2012; 53(9): 5585–5593. doi: 10.1167/iovs.12-9922 22836761
13. Lu LJ, Liu J. Human microbiota and ophthalmic disease. Yale J Biol Med. 2016; 89(3): 325–330. 27698616
14. Meason-Smith C, Diesel A, Patterson AP, Older CE, Johnson TJ, Mansell JM, et al. Characterization of the cutaneous mycobiota in healthy and allergic cats using next generation sequencing. Vet Dermatol. 2017; 28(1): 71–e17. doi: 10.1111/vde.12373 27553477
15. Meason-Smith C, Diesel A, Patterson AP, Older CE, Mansell JM, Suchodolski JS, et al. What is living on your dog’s skin? Characterization of the canine cutaneous mycobiota and fungal dysbiosis in canine allergic dermatitis. FEMS Microbiol Ecol. 2015; 91(12): https://doi.org/10.1093/femsec/fiv139 26542075
16. Minamoto Y, Hooda S, Swanson KS, Suchodolski JS. Feline gastrointestinal microbiota. Anim Health Res Rev. 2012; 13(1): 64–77. doi: 10.1017/S1466252312000060 22853923
17. Older CE, Diesel A, Patterson AP, Meason-Smith C, Johnson TJ, Mansell J, et al. The feline skin microbiota: The bacteria inhabiting the skin of healthy and allergic cats. PLoS One. 2017; 12(6): https://doi/org/10.1371/journal.pone.0178555 28575016
18. Whitley RD. Canine and feline primary ocular bacterial infections. Vet Clin North Am Small Anim Pract. 2000; 30(5): 1151–1167. doi: 10.1016/s0195-5616(00)05012-9 11033880
19. Gaskin JM. Microbiology of the canine and feline eye. Vet Clin North Am Small Anim Pract. 1980; 10(2): 303–316. doi: 10.1016/s0195-5616(80)50031-8 6251592
20. Gerding PA, Cormany K, Weisiger R, Kakoma I. Survey and topographic distribution of bacterial and fungal microorganisms in eyes of clinically normal cats. Feline Pract. 1993; 21(3): 20–23.
21. Kiełbowicz Z, Płoneczka-Janeczko K, Bania J, Bierowiec K, Kiełbowicz M. Characteristics of the bacterial flora in the conjunctival sac of cats from Poland. J Small Anim Pract. 2015; 56(3): 203–206. doi: 10.1111/jsap.12304 25482666
22. Shewen PE, Povey RC, Wilson MR. A survey of the conjunctival flora of clinically normal cats and cats with conjunctivitis. Canadian Vet J. 1980; 21(8): 231–233.
23. Andrew SE, Nguyen A, Jones GL, Brooks DE. Seasonal effects on the aerobic bacterial and fungal conjunctival flora of normal thoroughbred brood mares in Florida. Vet Ophthalmol. 2003; 6(1): 45–50. 12641842
24. Prado MR, Rocha MFG, Brito ÉHS, Girão MD, Monteiro AJ, Teixeira MFS, et al. Survey of bacterial microorganisms in the conjunctival sac of clinically normal dogs and dogs with ulcerative keratitis in Fortaleza, Ceará, Brazil. Vet Ophthalmol. 2005; 8(1): 33–37. doi: 10.1111/j.1463-5224.2005.04061.x 15644098
25. Furiani N, Scarampella F, Anna Martino P, Panzini I, Fabbri E, Ordeix L. Evaluation of the bacterial microflora of the conjunctival sac of healthy dogs and dogs with atopic dermatitis. Vet Dermatol. 2011; 22(6): 490–496. doi: 10.1111/j.1365-3164.2011.00979.x 21535255
26. McDonald PJ, Watson ADJ. Microbial flora of normal canine conjunctivae. J Small Anim Pract. 1976; 17(12): 809–812. doi: 10.1111/j.1748-5827.1976.tb06947.x 1011806
27. Sandmeyer LS, Bauer BS, Mohaghegh Poor SM, Feng CX, Chirino-Trejo M. Alterations in conjunctival bacteria and antimicrobial susceptibility during topical administration of ofloxacin after cataract surgery in dogs. Am J Vet Res. 2017; 78(2): 207–214. doi: 10.2460/ajvr.78.2.207 28140645
28. Samuelson DA, Andresen TL, Gwin RM. Conjunctival fungal flora in horses, cattle, dogs, and cats. J Am Vet Med Assoc. 1984; 184(10): 1240–1242. 6539761
29. Wang L, Pan Q, Zhang L, Xue Q, Cui J, Qi C. Investigation of bacterial microorganisms in the conjunctival sac of clinically normal dogs and dogs with ulcerative keratitis in Beijing, China. Vet Ophthalmol. 2008; 11(3): 145–149. doi: 10.1111/j.1463-5224.2008.00579.x 18435654
30. Urban M, Wyman M, Rheins M, Marraro RV. Conjunctival flora of clinically normal dogs. J Am Vet Med Assoc.1972; 161(2): 201–206. 5036187
31. Cattabiani F, Cabassi E, Allodi C, Gianelli F. Bacterial flora of the conjunctival sac of the horse. Ann Sclavo. 1976; 18(1): 91–119. 788654
32. Gemensky-Metzler AJ, Wilkie DA, Kowalski JJ, Schmall LM, Willis AM, Yamagata M. Changes in bacterial and fungal ocular flora of clinically normal horses following experimental application of topical antimicrobial or antimicrobial-corticosteroid ophthalmic preparations. Am J Vet Res. 2005; 66(5): 800–811. doi: 10.2460/ajvr.2005.66.800 15934607
33. Khosravi AR, Nikaein D, Sharifzadeh A, Gharagozlou F. Ocular fungal flora from healthy horses in Iran. J Mycol Méd. 2014; 24(1): 29–33. doi: 10.1016/j.mycmed.2013.10.006 24411178
34. Rosa M, Cardozo LM, Da Silva Pereira J, Brooks DE, Martins ALB, Florido PSS, et al. Fungal flora of normal eyes of healthy horses from the State of Rio de Janeiro, Brazil. Vet Ophthalmol. 2003; 6(1): 51–55. 12641843
35. Whitley RD, Moore CP. Microbiology of the equine eye in health and disease. Vet Clin North Am Large Anim Pract. 1984; 6(3): 451–466. 6393541
36. Rappe MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003; 57(1): 369–394.
37. Willcox MD. Characterization of the normal microbiota of the ocular surface. Exp Eye Res. 2013; 117: 99–105. doi: 10.1016/j.exer.2013.06.003 23797046
38. Doan T, Akileswaran L, Andersen D, Johnson B, Ko N, Shrestha A, et al. Paucibacterial microbiome and resident DNA virome of the healthy conjunctiva. Invest Ophthalmol Vis Sci. 2016; 57(13): 5116–5126. doi: 10.1167/iovs.16-19803 27699405
39. Dong Q, Brulc JM, Iovieno A, Bates B, Garoutte A, Miller D, et al. Diversity of bacteria at healthy human conjunctiva. Invest Ophthalmol Vis Sci. 2011; 52(8): 5408–5413. doi: 10.1167/iovs.10-6939 21571682
40. Zegans ME, Van Gelder RN. Considerations in understanding the ocular surface microbiome. Am J Ophthalmol. 2014; 158(3): 420–422. doi: 10.1016/j.ajo.2014.06.014 25132249
41. Weese SJ, Nichols J, Jalali M, Litster A. The oral and conjunctival microbiotas in cats with and without feline immunodeficiency virus infection. Vet Res. 2015; 46:21. https://doi/10.1186/s13567-014-0140-5 25879465
42. Ozkan J, Coroneo M, Willcox M, Wemheuer B, Thomas T. Identification and visualization of a distinct microbiome in ocular surface conjunctival tissue. Invest Ophthalmol Vis Sci. 2018; 59(10): 4268–4276. doi: 10.1167/iovs.18-24651 30140925
43. Ozkan J, Nielsen S, Diez-Vives C, Coroneo M, Thomas T, Willcox M. Temporal stability and composition of the ocular surface microbiome. Sci Rep. 2017; 7(1):9880. https://doi/10.1038/s41598-017-10494-9 28852195
44. Scott EM, Arnold C, Dowell S, Suchodolski JS. Evaluation of the bacterial ocular surface microbiome in clinically normal horses before and after treatment with topical neomycin-polymyxin-bacitracin. PLoS One 2019; 14(4): https://doi.10.1371/journal.pone.0214877 30943258
45. Leis ML, Costa MO. Initial description of the core ocular surface microbiome in dogs: Bacterial community diversity and composition in a defined canine population. Vet Ophthalmol. 2018; https://doi/10.1111/vop.12599 30095241
46. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, et al. QIIME2: Reproducible, interactive, scalable, extensible microbiome data science. PeerJ Preprints. 2018; https://doi/10.7287/peerj.preprints.27295v1
47. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13(7): 581–583. doi: 10.1038/nmeth.3869 27214047
48. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006; 72(7): 5069–5072. doi: 10.1128/AEM.03006-05 16820507
49. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012; 6(3): 610–618. doi: 10.1038/ismej.2011.139 22134646
50. Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995; 57(1): 289–300.
51. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011; 12(6): https://doi/10.1186/gb-2011-12-6-r60 21702898
52. Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion M-J, Berger B, et al. Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions. Bioinformatics. 2017; 33(5): 782–783. doi: 10.1093/bioinformatics/btw725 28025202
53. Tyler AD, Smith MI, Silverberg MS. Analyzing the human microbiome: a "how to" guide for physicians. Am J Gastroenterol. 2014; 109: 983–993. doi: 10.1038/ajg.2014.73 24751579
54. Huang Y, Yang B, Li W. Defining the normal core microbiome of conjunctival microbial communities. Clin Microbiol Infect. 2016; 22(7): 643.e7–.e12.
55. Dey S, Gunda S, Mitra AK. Pharmacokinetics of erythryomycin in rabbit corneas after single-dose infusion: role of p-glycoprotein as a barrier to in vivo ocular drug absorption. J Pharmacol Exp Ther. 2004; 311(1): 246–255. doi: 10.1124/jpet.104.069583 15175422
56. Eberl L, Vandamme P. Members of the genus Burkholderia: good and bad guys. F1000Res. 2016; 5: https://doi/10.12688/f1000research.8221.1 27303639
57. Eser I, Altan T, Stahl JE, Aydin MD, Inan N, Kapran Z, et al. Two cases of Burkholderia cepacia endophthalmitis. Br J Ophthalmol. 2006; 90(9): 1211.
58. Chen KJ, Sun MH, Hou CH, Sun CC, Chen TL. Burkholderia pseudomallei endophthalmitis. J Clin Microbiol. 2007; 45(12): 4073–4074. doi: 10.1128/JCM.01467-07 17913931
59. Ibrahim M, Yap JY. Burkholderia cepacia: a rare cause of bacterial keratitis. BMJ Case Rep. 2018; https://doi/10.1136/bcr-2018-224552 29695396
60. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology. 2014; 12(87): http://www.biomedcentral.com/1741-7007/12/87
61. Ozkan J, Zhu H, Gabriel M, Holden BA, Willcox MDP. Effect of prophylactic antibiotic drops on ocular microbiota and physiology during silicone hydrogel lens wear. Optom Vis Sci. 2012; 89(3): 326–335. doi: 10.1097/OPX.0b013e318243280e 22246331
62. van den Bos R. The function of allogrooming in domestic cats (Felis silvestris catus); a study in a group of cats living in confinement. J Ethol. 1998; 16(1): 1–13.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy