#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Fisheries governance in the face of climate change: Assessment of policy reform implications for Mexican fisheries


Autoři: Miguel Angel Cisneros-Mata aff001;  Tracey Mangin aff002;  Jennifer Bone aff002;  Laura Rodriguez aff004;  Sarah Lindley Smith aff005;  Steven D. Gaines aff002
Působiště autorů: Instituto Nacional de Pesca y Acuacultura, Guaymas, Sonora, Mexico aff001;  Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara CA, United States of America aff002;  Sustainable Fisheries Group, Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, CA, United States of America aff003;  Environmental Defense Fund de México A.C., La Paz, BCS, México aff004;  Environmental Defense Fund, Boston, MA, United States of America aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222317

Souhrn

Climate change is driving shifts in the abundance and distribution of marine fish and invertebrates and is having direct and indirect impacts on seafood catches and fishing communities, exacerbating the already negative effects of unsustainably high fishing pressure that exist for some stocks. Although the majority of fisheries in the world are managed at the national or local scale, most existing approaches to assessing climate impacts on fisheries have been developed on a global scale. It is often difficult to translate from the global to regional and local settings because of limited relevant data. To address the need for fisheries management entities to identify those fisheries with the greatest potential for climate change impacts, we present an approach for estimating expected climate change-driven impacts on the productivity and spatial range of fisheries at the regional scale in a data-poor context. We use a set of representative Mexican fisheries as test cases. To assess the implications of climate impacts, we compare biomass, harvest, and profit outcomes from a bioeconomic model under contrasting management policies and with and without climate change. Overall results show that climate change is estimated to negatively affect nearly every fishery in our study. However, the results indicate that overfishing is a greater threat than climate change for these fisheries, hence fixing current management challenges has a greater upside than the projected future costs of moderate levels of climate change. Additionally, this study provides meaningful first approximations of potential effects of both climate change and management reform in Mexican fisheries. Using the climate impact estimations and model outputs, we identify high priority stocks, fleets, and regions for policy reform in Mexico in the face of climate change. This approach can be applied in other data-poor circumstances to focus future research and policy reform efforts on stocks now subject to additional stress due to climate change. Considering their growing relevance as a critical source of protein and micronutrients to nourish our growing population, it is urgent for regions to develop sound fishery management policies in the short-term as they are the most important intervention to mitigate the adverse effects of climate change on marine fisheries.

Klíčová slova:

Biomass – Climate change – Crabs – Fisheries – Marine fish – Mexican people – Mexico – Ocean temperature


Zdroje

1. Brierley AS, Kingsford MJ. Impacts of Climate Change on Marine Organisms and Ecosystems. Curr Biol. 2009 Jul;19(14):R602–14. doi: 10.1016/j.cub.2009.05.046 19640499

2. Easterling W, Aggarwal P, Batima P, Brander K, Erda L, Howden M, et al. Food, fibre and forest products.:42.

3. Hoegh-Guldberg O, Bruno JF. The Impact of Climate Change on the World’s Marine Ecosystems. Science. 2010 Jun 18;328(5985):1523–8. doi: 10.1126/science.1189930 20558709

4. Rice JC, Garcia SM. Fisheries, food security, climate change, and biodiversity: characteristics of the sector and perspectives on emerging issues. ICES J Mar Sci. 2011 Jul 1;68(6):1343–53.

5. Allison EH, Perry AL, Badjeck M-C, Adger WN, Brown K, Conway D, et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 2009;10(2):173–96.

6. Brander KM. Global fish production and climate change. [cited 2019 Mar 18]; Available from: https://www.pnas.org/content/104/50/19709

7. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Zeller D, et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol. 2010;16(1):24–35.

8. Daw T, Adger WN, Brown K, Badjeck M-C. Climate change and capture fisheries: potential impacts, adaptation and mitigation.:44.

9. Möllmann C, Diekmann R. Marine Ecosystem Regime Shifts Induced by Climate and Overfishing. In: Advances in Ecological Research [Internet]. Elsevier; 2012 [cited 2019 Mar 18]. p. 303–47. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123983152000041

10. Rose GA. Reconciling overfishing and climate change with stock dynamics of Atlantic cod (Gadus morhua) over 500 years. Can J Fish Aquat Sci. 2004 Sep;61(9):1553–7.

11. Rijnsdorp AD, Peck MA, Engelhard GH, Mollmann C, Pinnegar JK. Resolving the effect of climate change on fish populations. ICES J Mar Sci. 2009 Aug 1;66(7):1570–83.

12. Barange M, Ian R. Perry. Physical and ecological impacts of climate change relevant to marine and inland capture fisheries and aquaculture. In: Climate change implications for fisheries and aquaculture. FAO; 2009.

13. Rose G. On distributional responses of North Atlantic fish to climate change. ICES J Mar Sci. 2005 Oct;62(7):1360–74.

14. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 2009;10(3):235–51.

15. Payne MR, Barange M, Cheung WWL, MacKenzie BR, Batchelder HP, Cormon X, et al. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J Mar Sci J Cons. 2016 May;73(5):1272–82.

16. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. Marine Taxa Track Local Climate Velocities. Science. 2013 Sep 13;341(6151):1239–42. doi: 10.1126/science.1239352 24031017

17. Gaines SD, Costello C, Owashi B, Mangin T, Bone J, Molinos JG, et al. Improved fisheries management could offset many negative effects of climate change. Sci Adv. 2018 Aug;4(8):eaao1378. doi: 10.1126/sciadv.aao1378 30167455

18. Christopher M. Free, Thornson JT, Pinsky ML, Oken KL, Wiednmann J, Jensen OP. Impacts of historical warming on marine fisheries production. Science. 2019;363:979–83. doi: 10.1126/science.aau1758

19. Perry AL, Low PJ, Ellis JR, Reynolds JD. Climate change and distribution shifts in marine fishes. science. 2005;308(5730):1912–1915. doi: 10.1126/science.1111322 15890845

20. Booth DJ, Feary D, Kobayashi D, Luiz O, Nakamura Y. Tropical Marine Fishes and Fisheries and Climate Change. In: Phillips BF, Pérez-Ramírez M, editors. Climate Change Impacts on Fisheries and Aquaculture [Internet]. Chichester, UK: John Wiley & Sons, Ltd; 2017 [cited 2019 Jun 13]. p. 875–96. Available from: http://doi.wiley.com/10.1002/9781119154051.ch26

21. García Molinos J, Halpern BS, Schoeman DS, Brown CJ, Kiessling W, Moore PJ, et al. Climate velocity and the future global redistribution of marine biodiversity. Nat Clim Change. 2016 Jan;6(1):83–8.

22. Barange M, Bahri T, Beveridge M, Cochrane K, Funge-Smith S, Poulain F. Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. 2018.

23. McIlgorm A, Hanna S, Knapp G, Le Floc’H P, Millerd F, Pan M. How will climate change alter fishery governanceʔ Insights from seven international case studies. Mar Policy. 2010 Jan;34(1):170–7.

24. Costello C, Ovando D, Hilborn R, Gaines SD, Deschenes O, Lester SE. Status and Solutions for the World’s Unassessed Fisheries. Science. 2012 Oct 26;338(6106):517–20. doi: 10.1126/science.1223389 23019613

25. FAO, editor. The state of world fisheries and aquaculture—Meeting the sustainable development goals. Rome; 2018. 210 p.

26. Oceana. Auditoría Pesquera: Pescando a ciegas [Internet]. Oceana; 2019 Jun [cited 2019 Jun 13]. Available from: https://auditoriapesquera.mx/wp-content/uploads/2019/06/OCEANA_Reporte_Auditoria-pesquera_web..pdf

27. Costello C, Ovando D, Clavelle T, Strauss CK, Hilborn R, Melnychuk MC, et al. Global fishery prospects under contrasting management regimes. Proc Natl Acad Sci. 2016 May 3;113(18):5125–9. doi: 10.1073/pnas.1520420113 27035953

28. Pella JJ, Tomlinson PK. A generalized stock production model. Inter-American Tropical Tuna Commission Bulletin. 1969;13(3):416–97.

29. Yoshimoto SS, Clarke RP. Comparing Dynamic Versions of the Schaefer and Fox Production Models and Their Application to Lobster Fisheries. Can J Fish Aquat Sci. 1993 Jan;50(1):181–9.

30. Mangin T, Cisneros-Mata MÁ, Bone J, Costello C, Gaines SD, McDonald G, et al. The cost of management delay: The case for reforming Mexican fisheries sooner rather than later. Mar Policy. 2018 Feb 1;88:1–10.

31. Cisneros-Mata MÁ. Some guidelines for a reform in Mexican fisheries. 2016;15.

32. Blanchard Julia L., Jennings Simon, Holmes Robert, Harle James, Merino Gorka, Allen J. Icarus, et al. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos Trans R Soc B Biol Sci. 2012 Nov 5;367(1605):2979–89.

33. Ji R, Edwards M, Mackas DL, Runge JA, Thomas AC. Marine plankton phenology and life history in a changing climate: current research and future directions. J Plankton Res. 2010 Oct 1;32(10):1355–68. doi: 10.1093/plankt/fbq062 20824042

34. Ganster P, Arizpe C, Ivanova A. Los Cabos: Prospectiva de un Paraíso Natural y Turístico. San Diego State University Press; 2012.

35. Saldívar-Lucio R, Salvadeo C, Del Monte-Luna P, Arreguín-Sánchez F, Villalobos H, Lluch-Belda D, et al. Patrones históricos y escenarios térmicos futuros en mares mexicanos. Rev Biol Mar Oceanogr. 2015 Aug;50(2):331–45.

36. Lenton A, Matear RJ, Mongin M. Effects of Climate Change on Ocean Acidification Relevant to the Pacific Islands.:12.

37. Tzanatos E, Raitsos DE, Triantafyllou G, Somarakis S, Tsonis AA. Indications of a climate effect on Mediterranean fisheries. Clim Change. 2014 Jan;122(1–2):41–54.

38. Weatherdon LV, Magnan AK, Rogers AD, Sumaila UR, Cheung WWL. Observed and Projected Impacts of Climate Change on Marine Fisheries, Aquaculture, Coastal Tourism, and Human Health: An Update. Front Mar Sci [Internet]. 2016 [cited 2019 Mar 18];3. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2016.00048/full

39. Travers-Trolet M, Shin Y-J, Shannon LJ, Moloney CL, Field JG. Combined Fishing and Climate Forcing in the Southern Benguela Upwelling Ecosystem: An End-to-End Modelling Approach Reveals Dampened Effects. Álvarez I, editor. PLoS ONE. 2014 Apr 7;9(4):e94286. doi: 10.1371/journal.pone.0094286 24710351

40. Holbrook NJ, Johnson JE. Climate change impacts and adaptation of commercial marine fisheries in Australia: a review of the science. Clim Change. 2014 Jun 1;124(4):703–15.

41. Bakun A, Black BA, Bograd SJ, García-Reyes M, Miller AJ, Rykaczewski RR, et al. Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Curr Clim Change Rep. 2015 Jun;1(2):85–93.

42. Hare JA, Morrison WE, Nelson MW, Stachura MM, Teeters EJ, Griffis RB, et al. A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf. Hiddink JG, editor. PLOS ONE. 2016 Feb 3;11(2):e0146756. doi: 10.1371/journal.pone.0146756 26839967

43. Daw TM, Cinner JE, McClanahan TR, Brown K, Stead SM, Graham NAJ, et al. To Fish or Not to Fish: Factors at Multiple Scales Affecting Artisanal Fishers’ Readiness to Exit a Declining Fishery. Clifton J, editor. PLoS ONE. 2012 Feb 10;7(2):e31460. doi: 10.1371/journal.pone.0031460 22348090

44. Arroyo Martínez A, Manzanilla Naim S, Zavala Hidalgo J. Vulnerability to climate change of marine and coastal fisheries in México. Atmosfera. 2011;24(1):103–23.

45. Robinson CJ, Gómez-Gutiérrez J, Markaida U, Gilly WF. Prolonged decline of jumbo squid (Dosidicus gigas) landings in the Gulf of California is associated with chronically low wind stress and decreased chlorophyll a after El Niño 2009–2010. Fish Res. 2016 Jan 1;173:128–38.

46. Litz MNC, Phillips AJ, Brodeur RD, Emmett RL. SEASONAL OCCURRENCES OF HUMBOLDT SQUID (DOSIDICUS GIGAS) IN THE NORTHERN CALIFORNIA CURRENT SYSTEM. 2011;52:12.

47. Kritzer JP, Costello C, Mangin T, Smith SL. Responsive harvest control rules provide inherent resilience to adverse effects of climate change and scientific uncertainty. Prellezo R, editor. ICES J Mar Sci [Internet]. 2019 Apr 1 [cited 2019 Jun 13]; Available from: https://academic.oup.com/icesjms/advance-article/doi/10.1093/icesjms/fsz038/5425355


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#