Differential immunomodulation of T-cells by immunoglobulin replacement therapy in primary and secondary antibody deficiency
Autoři:
Tri Dinh aff001; Jun Oh aff001; Donald William Cameron aff002; Seung-Hwan Lee aff001; Juthaporn Cowan aff001
Působiště autorů:
Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
aff001; Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
aff002; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223861
Souhrn
Patients with primary or secondary antibody deficiency (PAD or SAD) are at increased risk of recurrent infections that can be alleviated by immunoglobulin replacement therapy (IRT). In addition to replenishing antibody levels, IRT has been suggested to modulate immune response in patients with antibody deficiency. Although both commonly treated with IRT, the underlying causes of PAD and SAD vary greatly, suggesting differential modulation of T-cell function that may lead to different responses to IRT. To explore this, peripheral blood mononuclear cells (PBMCs) were sampled from 17 PAD and 14 SAD patients before and 2–10 months after initiation of IRT, and analyzed for changes in T-cell phenotype and function. Proportions of CD4, CD8, Treg, or memory T-cells did not significantly change post-IRT compared to pre-IRT. However, we report distinct modulation in T-cell function between PAD and SAD patients post-IRT. Upon α-CD3/CD28 stimulation, proportion of IFN-γ+ CD4 and CD8 T-cells increased in SAD (p = 0.005) but not PAD patients post-IRT compared to baseline. Interestingly, total T-cell proliferation was reduced post-IRT in both PAD and SAD patients, although the reduction in proliferation was primarily due to reduced CD4 T-cell proliferation in PAD (p = 0.025) in contrast to CD8 T-cells in SAD (p = 0.042). In summary, even though IRT provides patients with passive humoral immunity-mediated protection in PAD and SAD, our findings suggest that IRT immunomodulation of T-cells is different in T-cell subsets depending on underlying immunodeficiency.
Klíčová slova:
Antibodies – Blood – Cytokines – Cytotoxic T cells – Flow cytometry – Memory T cells – T cells – Immune deficiency
Zdroje
1. Wasserman RL. The nuts and bolts of immunoglobulin treatment for antibody deficiency. The Journal of Allergy Clinical Immunology: In Practice. 2016;4(6):1076–81. e3. doi: 10.1016/j.jaip.2016.09.011 27836057
2. Kaveri S, Maddur M, Hegde P, Lacroix‐Desmazes S, Bayry J. Intravenous immunoglobulins in immunodeficiencies: more than mere replacement therapy. Clinical Experimental Immunology. 2011;164:2–5. doi: 10.1111/j.1365-2249.2011.04387.x 21466545
3. Bonilla FA, Bernstein IL, Khan DA, Ballas ZK, Chinen J, Frank MM, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Annals of allergy, asthma & immunology. 2005;94(5):S1–S63.
4. Berger M. Principles of and advances in immunoglobulin replacement therapy for primary immunodeficiency. Immunology allergy clinics of North America. 2008;28(2):413–37. doi: 10.1016/j.iac.2008.01.008 18424340
5. Health NIo. Intravenous immunoglobulin: prevention and treatment of disease. NIH Consensus Statement Online. 1990;8:1–23.
6. Compagno N, Malipiero G, Cinetto F, Agostini C. Immunoglobulin replacement therapy in secondary hypogammaglobulinemia. Frontiers in immunology. 2014;5:626. doi: 10.3389/fimmu.2014.00626 25538710
7. Compagno N, Cinetto F, Semenzato G, Agostini C. Subcutaneous immunoglobulin in lymphoproliferative disorders and rituximab-related secondary hypogammaglobulinemia: a single-center experience in 61 patients. haematologica. 2014;99(6):1101–6. doi: 10.3324/haematol.2013.101261 24682509
8. Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clinical immunology. 1999;92(1):34–48. doi: 10.1006/clim.1999.4725 10413651
9. Grace PY, Chiang D, Song SJ, Hoyte EG, Huang J, Vanishsarn C, et al. Regulatory T cell dysfunction in subjects with common variable immunodeficiency complicated by autoimmune disease. Clinical immunology. 2009;131(2):240–53. doi: 10.1016/j.clim.2008.12.006 19162554
10. Melo KM, Carvalho KI, Bruno FR, Ndhlovu LC, Ballan WM, Nixon DF, et al. A decreased frequency of regulatory T cells in patients with common variable immunodeficiency. PLoS One. 2009;4(7):e6269. doi: 10.1371/journal.pone.0006269 19649263
11. Quinti I, Mitrevski M. Modulatory effects of Antibody replacement therapy to innate and Adaptive immune cells. Frontiers in immunology. 2017;8:697. doi: 10.3389/fimmu.2017.00697 28670314
12. Paquin-Proulx D, Santos BA, Carvalho KI, Toledo-Barros M, de Oliveira AKB, Kokron CM, et al. IVIg immune reconstitution treatment alleviates the state of persistent immune activation and suppressed CD4 T cell counts in CVID. PLoS One. 2013;8(10):e75199. doi: 10.1371/journal.pone.0075199 24130688
13. Jaffe EF, Lejtenyi MC, Noya FJ, Mazer BD. Secondary hypogammaglobulinemia. Immunology allergy clinics of North America. 2001;21(1):141–63.
14. Onigbanjo MT, Orange JS, Perez EE, Sullivan KE. Hypogammaglobulinemia in a pediatric tertiary care setting. Clinical Immunology. 2007;125(1):52–9. doi: 10.1016/j.clim.2007.05.017 17631052
15. Kay NE. Abnormal T-cell subpopulation function in CLL: excessive suppressor (T gamma) and deficient helper (T mu) activity with respect to B-cell proliferation. Blood. 1981;57(3):418–20. 6450620
16. Chong BF, Wilson AJ, Gibson HM, Hafner MS, Luo Y, Hedgcock CJ, et al. Immune function abnormalities in peripheral blood mononuclear cell cytokine expression differentiates stages of cutaneous T-cell lymphoma/mycosis fungoides. Clinical Cancer Research. 2008;14(3):646–53. doi: 10.1158/1078-0432.CCR-07-0610 18245523
17. Yang Z-Z, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM. Attenuation of CD8+ T-cell function by CD4+ CD25+ regulatory T cells in B-cell non-Hodgkin's lymphoma. Cancer research. 2006;66(20):10145–52. doi: 10.1158/0008-5472.CAN-06-1822 17047079
18. Stasi R, Cooper N, Del Poeta G, Stipa E, Evangelista ML, Abruzzese E, et al. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell–depleting therapy with rituximab. Blood. 2008;112(4):1147–50. doi: 10.1182/blood-2007-12-129262 18375792
19. Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. New England Journal of Medicine. 2001;345(10):747–55. doi: 10.1056/NEJMra993360 11547745
20. Mouthon L, Kaveri S, Spalter S, Lacroix-Desmazes S, Lefranc C, Desai R, et al. Mechanisms of action of intravenous immune globulin in immune‐mediated diseases. Clinical Experimental Immunology. 1996;104:3–9. 8625540
21. Vani J, Elluru S, Negi V-S, Lacroix-Desmazes S, Kazatchkine MD, Bayary J, et al. Role of natural antibodies in immune homeostasis: IVIg perspective. Autoimmunity reviews. 2008;7(6):440–4. doi: 10.1016/j.autrev.2008.04.011 18558359
22. Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. New England Journal of Medicine. 2012;367(21):2015–25. doi: 10.1056/NEJMra1009433 23171098
23. Kaveri SV, Mouthon L, Kazatchkine MD. Immunomodulating effects of intravenous immunoglobulin in autoimmune and inflammatory diseases. Journal of neurology, neurosurgery, & psychiatry. 1994;57(Suppl):6.
24. Siedlar M, Strach M, Bukowska-Strakova K, Lenart M, Szaflarska A, Węglarczyk K, et al. Preparations of intravenous immunoglobulins diminish the number and proinflammatory response of CD14+ CD16++ monocytes in common variable immunodeficiency (CVID) patients. Clinical immunology. 2011;139(2):122–32. doi: 10.1016/j.clim.2011.01.002 21300572
25. Andersson U, Björk L, Skansen-Saphir U, Andersson J. Down-regulation of cytokine production and interleukin-2 receptor expression by pooled human IgG. Immunology. 1993;79(2):211. 8344700
26. Andersson U, Björk L, Skansén‐Saphir U, Andersson J. Pooled human IgG modulates cytokine production in lymphocytes and monocytes. Immunological reviews. 1994;139(1):21–42.
27. Sewell W, North M, Cambronero R, Webster A, Farrant J. In vivo modulation of cytokine synthesis by intravenous immunoglobulin. Clinical experimental immunology. 1999;116(3):509. doi: 10.1046/j.1365-2249.1999.00924.x 10361243
28. Ochs HD, Oukka M, Torgerson TR. TH17 cells and regulatory T cells in primary immunodeficiency diseases. Journal of Allergy Clinical Immunology. 2009;123(5):977–83. doi: 10.1016/j.jaci.2009.03.030 19410687
29. Sakaguchi S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology. 2005;6(4):345. doi: 10.1038/ni1178 15785760
30. Currier JR, Kuta EG, Turk E, Earhart LB, Loomis-Price L, Janetzki S, et al. A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays. Journal of immunological methods. 2002;260(1–2):157–72. doi: 10.1016/s0022-1759(01)00535-x 11792386
31. Garlie NK, LeFever AV, Siebenlist RE, Levine BL, June CH, Lum LG. T cells coactivated with immobilized anti-CD3 and anti-CD28 as potential immunotherapy for cancer. Journal of immunotherapy. 1999;22(4):336–45. 10404435
32. Abomaray F, Gidlöf S, Bezubik B, Engman M, Götherström C. Mesenchymal Stromal Cells Support Endometriotic Stromal Cells In Vitro. Stem cells international. 2018;2018.
33. Guzera M, Szulc-Dąbrowska L, Cywińska A, Archer J, Winnicka A. In vitro influence of mycophenolic acid on selected parameters of stimulated peripheral canine lymphocytes. PloS one. 2016;11(5):e0154429. doi: 10.1371/journal.pone.0154429 27138877
34. White WB, Desbonnet CR, Ballow M. Immunoregulatory effects of intravenous immune serum globulin therapy in common variable hypogammaglobulinemia. The American journal of medicine. 1987;83(3):431–6. doi: 10.1016/0002-9343(87)90752-2 2959150
35. Bateman E, Ayers L, Sadler R, Lucas M, Roberts C, Woods A, et al. T cell phenotypes in patients with common variable immunodeficiency disorders: associations with clinical phenotypes in comparison with other groups with recurrent infections. Clinical Experimental Immunology. 2012;170(2):202–11. doi: 10.1111/j.1365-2249.2012.04643.x 23039891
36. Tollerud D, Clark J, Brown LM, Neuland C, Pankiw-Trost L, Blattner W, et al. The influence of age, race, and gender on peripheral blood mononuclear-cell subsets in healthy nonsmokers. Journal of clinical immunology. 1989;9(3):214–22. doi: 10.1007/bf00916817 2788656
37. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383(6603):787. doi: 10.1038/383787a0 8893001
38. Maddur MS, Vani J, Hegde P, Lacroix-Desmazes S, Kaveri SV, Bayry J. Inhibition of differentiation, amplification, and function of human TH17 cells by intravenous immunoglobulin. Journal of Allergy Clinical Immunology. 2011;127(3):823–30. e7. doi: 10.1016/j.jaci.2010.12.1102 21281961
39. Sung S, Bjorndahl J, Wang CY, Kao H, Fu S. Production of tumor necrosis factor/cachectin by human T cell lines and peripheral blood T lymphocytes stimulated by phorbol myristate acetate and anti-CD3 antibody. Journal of Experimental Medicine. 1988;167(3):937–53. doi: 10.1084/jem.167.3.937 2965212
40. Cuturi MC, Murphy M, Costa-Giomi MP, Weinmann R, Perussia B, Trinchieri G. Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes. Journal of Experimental Medicine. 1987;165(6):1581–94. doi: 10.1084/jem.165.6.1581 3108447
41. Giovannetti A, Pierdominici M, Mazzetta F, Marziali M, Renzi C, Mileo AM, et al. Unravelling the complexity of T cell abnormalities in common variable immunodeficiency. The Journal of Immunology. 2007;178(6):3932–43. doi: 10.4049/jimmunol.178.6.3932 17339494
42. Stagg A, Funauchi M, Knight S, Webster A, Farrant J. Failure in antigen responses by T ceils from patients with common variable immunodeficiency (CVID). Clinical Experimental Immunology. 1994;96(1):48–53. doi: 10.1111/j.1365-2249.1994.tb06228.x 8149665
43. Funauchi M, Farrant J, Moreno C, Webster A. Defects in antigen‐driven lymphocyte responses in common variable immunodeficiency (CVID) are due to a reduction in the number of antigen‐specific CD4+ T cells. Clinical Experimental Immunology. 1995;101(1):82–8. doi: 10.1111/j.1365-2249.1995.tb02281.x 7621598
44. Giovannetti A, Pierdominici M, Aiuti F. T-cell homeostasis: the dark (ened) side of common variable immunodeficiency. Blood. 2008;112(2):446–. doi: 10.1182/blood-2008-03-145045 18606891
45. Oh JS, Ali AK, Kim S, Corsi DJ, Cooper CL, Lee SH. NK cells lacking FcεRIγ are associated with reduced liver damage in chronic hepatitis C virus infection. European journal of immunology. 2016;46(4):1020–9. doi: 10.1002/eji.201546009 26712042
46. Van Schaik I, Lundkvist I, Vermeulen M, Brand A. Polyvalent immunoglobulin for intravenous use interferes with cell proliferationin vitro. Journal of clinical immunology. 1992;12(5):325–34. doi: 10.1007/bf00920789 1430102
47. MacMillan HF, Lee T, Issekutz AC. Intravenous immunoglobulin G-mediated inhibition of T-cell proliferation reflects an endogenous mechanism by which IgG modulates T-cell activation. Clinical immunology. 2009;132(2):222–33. doi: 10.1016/j.clim.2009.04.002 19447680
48. Issekutz AC, Rowter D, Miescher S, Käsermann F. Intravenous IgG (IVIG) and subcutaneous IgG (SCIG) preparations have comparable inhibitory effect on T cell activation, which is not dependent on IgG sialylation, monocytes or B cells. Clinical immunology. 2015;160(2):123–32. doi: 10.1016/j.clim.2015.05.003 25982320
49. Ballow M, White W, Desbonnet C, Immunology C. Modulation of in vitro synthesis of immunoglobulin and the induction of suppressor activity by therapy with intravenous immune globulin. Journal of Allergy. 1989;84(4):595–602.
50. Kessel A, Ammuri H, Peri R, Pavlotzky ER, Blank M, Shoenfeld Y, et al. Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function. The Journal of Immunology. 2007;179(8):5571–5. doi: 10.4049/jimmunol.179.8.5571 17911644
51. De Groot AS, Moise L, McMurry JA, Wambre E, Van Overtvelt L, Moingeon P, et al. Activation of natural regulatory T cells by IgG Fc–derived peptide “Tregitopes”. Blood. 2008;112(8):3303–11. doi: 10.1182/blood-2008-02-138073 18660382
52. Tha-In T, Metselaar HJ, Tilanus HW, Groothuismink ZM, Kuipers EJ, Robert A, et al. Intravenous immunoglobulins suppress T-cell priming by modulating the bidirectional interaction between dendritic cells and natural killer cells. Blood. 2007;110(9):3253–62. doi: 10.1182/blood-2007-03-077057 17673603
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy