Adjuvant therapeutic potential of tonabersat in the standard treatment of glioblastoma: A preclinical F98 glioblastoma rat model study
Autoři:
Valerie De Meulenaere aff001; Ellen Bonte aff001; Jeroen Verhoeven aff002; Jean-Pierre Kalala Okito aff003; Leen Pieters aff004; Anne Vral aff004; Olivier De Wever aff005; Luc Leybaert aff006; Ingeborg Goethals aff007; Christian Vanhove aff008; Benedicte Descamps aff008; Karel Deblaere aff001
Působiště autorů:
Department of Radiology, Ghent University Hospital, Ghent, Belgium
aff001; Department of Pharmaceutical analysis, Ghent University, Ghent, Belgium
aff002; Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
aff003; Department of Human Structure and Repair, Ghent University, Ghent, Belgium
aff004; Department of Experimental Cancer Research, Ghent University, Ghent, Belgium
aff005; Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
aff006; Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
aff007; IBiTech—Medisip—Infinity lab, Ghent University, Ghent, Belgium
aff008
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224130
Souhrn
Purpose
Even with an optimal treatment protocol, the median survival of glioblastoma (GB) patients is only 12–15 months. Hence, there is need for novel effective therapies that improve survival outcomes. Recent evidence suggests an important role for connexin (Cx) proteins (especially Cx43) in the microenvironment of malignant glioma. Cx43-mediated gap junctional communication has been observed between tumor cells, between astrocytes and between tumor cells and astrocytes. Therefore, gap junction directed therapy using a pharmacological suppressor or modulator, such as tonabersat, could be a promising target in the treatment of GB. In this preclinical study, we evaluated the possible therapeutic potential of tonabersat in the F98 model.
Procedures
Female Fischer rats were inoculated with ± 25.000 F98 tumor cells in the right frontal lobe. Eight days post-inoculation contrast-enhanced T1-weighted (CE-T1w) magnetic resonance (MR) images were acquired to confirm tumor growth in the brain. After tumor confirmation, rats were randomized into a Control Group, a Connexin Modulation Group (CM), a Standard Medical Treatment Group (ST), and a Standard Medical Treatment with adjuvant Connexin Modulation Group (STCM). To evaluate therapy response, T2-weighted (T2w) and CE-T1w sequences were acquired at several time points. Tumor volume analysis was performed on CE-T1w images and statistical analysis was performed using a linear mixed model.
Results
Significant differences in estimated geometric mean tumor volumes were found between the ST Group and the Control Group and also between the STCM Group and the Control Group. In addition, significant differences in estimated geometric mean tumor volumes between the ST Group and the STCM Group were demonstrated. No significant differences in estimated geometric mean tumor volumes were found between the Control Group and the CM Group.
Conclusion
Our results demonstrate a therapeutic potential of tonabersat for the treatment of GB when used in combination with radiotherapy and temozolomide chemotherapy.
Klíčová slova:
Astrocytes – Cancer treatment – Euthanasia – Glioma – Magnetic resonance imaging – Oncology – Radiation therapy – Gap junctions
Zdroje
1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114: 97–109. doi: 10.1007/s00401-007-0243-4 17618441
2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131: 803–20. doi: 10.1007/s00401-016-1545-1 27157931
3. Omuro A. Glioblastoma and Other Malignant Gliomas. Jama. 2013;310: 1842. doi: 10.1001/jama.2013.280319 24193082
4. Ostrom QT, Gittleman H, Stetson L, Virk SM, Barnholtz-Sloan JS. Epidemiology of Gliomas. Cancer Treat Res. 2015;163: 1–14. doi: 10.1007/978-3-319-12048-5_1 25468222
5. Bradley WG, Waluch V, Yadley RA, Wycoff RR. Comparison of CT and MR in 400 patients with suspected disease of the brain and cervical spinal cord. Radiology. 2014;152: 695–702. doi: 10.1148/radiology.152.3.6463251 6463251
6. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. Supplemental information. N Engl J Med. 2005;352: 987–96. doi: 10.1056/NEJMoa043330 15758009
7. Kim S-SS, Harford JB, Pirollo KF, Chang EH. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine. Biochem Biophys Res Commun. 2015/06/24. 2015;468: 485–489. doi: 10.1016/j.bbrc.2015.06.137 26116770
8. Grek CL, Sheng Z, Naus CC, Sin WC, Gourdie RG, Ghatnekar GG. Novel approach to temozolomide resistance in malignant glioma: connexin43-directed therapeutics. Curr Opin Pharmacol. 2018;41: 79–88. doi: 10.1016/j.coph.2018.05.002 29803991
9. Decrock E, Vinken M, De Vuyst E, Krysko D V., D’Herde K, Vanhaecke T, et al. Connexin-related signaling in cell death: To live or let die? Cell Death Differ. 2009;16: 524–536. doi: 10.1038/cdd.2008.196 19197295
10. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, et al. Brain tumour cells interconnect to a functional and resistant network. Nature. 2015;528: 93. doi: 10.1038/nature16071 26536111
11. Lin Q, Balasubramanian K, Fan D, Kim S-J, Guo L, Wang H, et al. Reactive Astrocytes Protect Melanoma Cells from Chemotherapy by Sequestering Intracellular Calcium through Gap Junction Communication Channels. Neoplasia. 2010;12: 748–754. doi: 10.1593/neo.10602 20824051
12. Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. 2016;533: 493–498. doi: 10.1038/nature18268 27225120
13. Kim Y, Griffin JM, Nor MNM, Zhang J, Freestone PS, Danesh-Meyer H V, et al. Tonabersat Prevents Inflammatory Damage in the Central Nervous System by Blocking Connexin43 Hemichannels. Neurotherapeutics. 2017;14: 1148–1165. doi: 10.1007/s13311-017-0536-9 28560708
14. Hauge AW, Asghar MS, Schytz HW, Christensen K, Olesen J. Effects of tonabersat on migraine with aura: a randomised, double-blind, placebo-controlled crossover study. Lancet Neurol. 2009;8: 718–723. doi: 10.1016/S1474-4422(09)70135-8 19570717
15. Barth RF, Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol. 2009;94: 299–312. doi: 10.1007/s11060-009-9875-7 19381449
16. Ko L, Koestner A, Wechsler W. Morphological characterization of nitrosourea-induced glioma cell lines and clones. Acta Neuropathol. 1980;51: 23–31. doi: 10.1007/bf00688846 7435138
17. Bolcaen J, Descamps B, Deblaere K, Boterberg T, Hallaert G, Van den Broecke C, et al. MRI-guided 3D conformal arc micro-irradiation of a F98 glioblastoma rat model using the Small Animal Radiation Research Platform (SARRP). J Neurooncol. 2014;120: 257–266. doi: 10.1007/s11060-014-1552-9 25069566
18. Verhoeven J, Bolcaen J, De Meulenaere V, Kersemans K, Descamps B, Donche S, et al. Technical feasibility of [18 F ] FET and [18 F ] FAZA PET guided radiotherapy in a F98 glioblastoma rat model. 2019; 1–11.
19. Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H, Naus CC. Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene. 2015;35: 1504. doi: 10.1038/onc.2015.210 26165844
20. Sin W, Crespin S, Mesnil M. Opposing roles of connexin43 in glioma progression. BBA—Biomembr. 2012;1818: 2058–2067. doi: 10.1016/j.bbamem.2011.10.022 22063721
21. Murphy SF, Varghese RT, Lamouille S, Guo S, Pridham KJ, Kanabur P, et al. Connexin 43 Inhibition Sensitizes Chemoresistant Glioblastoma Cells to Temozolomide. Cancer Res. 2015;76: 139–149. doi: 10.1158/0008-5472.CAN-15-1286 26542214
22. Wang L, Peng Y, Peng J, Shao M, Ma L. Tramadol attenuates the sensitivity of glioblastoma to temozolomide through the suppression of Cx43-mediated gap junction intercellular communication. Int J Oncol. 2018;52: 295–304. doi: 10.3892/ijo.2017.4188 29115581
23. Gielen PR, Aftab Q, Ma N, Chen VC, Hong X, Lozinsky S, et al. Connexin43 confers Temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway. Neuropharmacology. 2013;75: 539–548. doi: 10.1016/j.neuropharm.2013.05.002 23688923
24. Munoz JL, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor- mediated induction of connexin 43. Cell Death Dis. 2014;5: 1–10. doi: 10.1038/cddis.2014.111 24675463
25. Kanabur P, Guo S, Rodgers CM, Simonds GR, Kelly DF, Gourdie RG, et al. Patient-derived glioblastoma stem cells respond differentially to targeted therapies. Oncotarget. 2016;7: 86406–86419. doi: 10.18632/oncotarget.13415 27863440
26. Baklaushev VP, Yusubalieva GM, Tsitrin EB, Gurina OI, Grinenko NP, Victorov I V., et al. Visualization of Connexin 43-positive cells of glioma and the periglioma zone by means of intravenously injected monoclonal antibodies. Drug Deliv. 2011;18: 331–337. doi: 10.3109/10717544.2010.549527 21309693
27. Yusubalieva GM, Baklaushev VP, Gurina OI, Zorkina YA, Gubskii IL, Kobyakov GL, et al. Treatment of Poorly Differentiated Glioma Using a Combination of Monoclonal Antibodies to Extracellular Connexin-43 Fragment, Temozolomide, and Radiotherapy. Bull Exp Biol Med. 2014;157: 510–515. doi: 10.1007/s10517-014-2603-0 25110095
28. Aasen T, Mesnil M, Poitiers U De, Naus CC, Laird DW. ‘Gap Junctions and Cancer: Communicating for 50 Years.’ Nat Rev Cancer. 2017;16: 775–788. doi: 10.1038/nrc.2016.105 27782134
29. Aasen T, Leithe E, Graham S V, Kameritsch P, Mayán MD, Mesnil M, et al. Connexins in cancer: bridging the gap to the clinic. Oncogene. 2019;38: 4429–4451. doi: 10.1038/s41388-019-0741-6 30814684
30. Naus CC, Laird DW. Implications and challenges of connexin connections to cancer. Nat Rev Cancer. 2010;10: 435. doi: 10.1038/nrc2841 20495577
31. Laird DW, Lampe PD. Therapeutic strategies targeting connexins. Nat Rev Drug Discov. 2018/10/12. 2018;17: 905–921. doi: 10.1038/nrd.2018.138 30310236
32. Van Vulpen M, Kal HB, Taphoorn MJB, El Sharouni SY. Changes in blood-brain barrier permeability induced by radiotherapy: Implications for timing of chemotherapy? (Review). Oncol Rep. 2002;9: 683–688. 12066192
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy