A participatory community case study of periurban coastal flood vulnerability in southern Ecuador
Autoři:
Erica Tauzer aff001; Mercy J Borbor-Cordova aff002; Jhoyzett Mendoza aff003; Telmo De La Cuadra aff003; Jorge Cunalata aff004; Anna M Stewart-Ibarra aff001
Působiště autorů:
Institute for Global Health & Translational Science, SUNY Upstate Medical University, Syracuse, New York, United States of America
aff001; Facultad de Ingeniería Marítima y Ciencias del Mar, Escuela Superior Politecnica del Litoral (ESPOL), Guayaquil, Guayas Province, Ecuador
aff002; National Service for Risk Management and Emergencies, Guayaquil, Guayas Province, Ecuador
aff003; Universidad Tecnica de Machala, Machala, El Oro Province, Ecuador
aff004; Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, United States of America
aff005; InterAmerican Institute for Global Change Research (IAI), Montevideo, Department of Montevideo, Uruguay
aff006
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224171
Souhrn
Background
Populations in coastal cities are exposed to increasing risk of flooding, resulting in rising damages to health and assets. Adaptation measures, such as early warning systems for floods (EWSFs), have the potential to reduce the risk and impact of flood events when tailored to reflect the local social-ecological context and needs. Community perceptions and experiences play a critical role in risk management, since perceptions influence people’s behaviors in response to EWSFs and other interventions.
Methods
We investigated community perceptions and responses in flood-prone periurban areas in the coastal city of Machala, Ecuador. Focus groups (n = 11) were held with community members (n = 65 people) to assess perceptions of flood exposure, sensitivity, adaptive capacity, and current alert systems. Discussions were audio recorded, transcribed, and coded by topic. Participatory maps were field validated, georeferenced, and digitized using GIS software. Qualitative data were triangulated with historical government information on rainfall, flood events, population demographics, and disease outbreaks.
Results
Flooding was associated with seasonal rainfall, El Niño events, high ocean tides, blocked drainage areas, overflowing canals, collapsed sewer systems, and low local elevation. Participatory maps revealed spatial heterogeneity in perceived flood risk across the community. Ten areas of special concern were mapped, including places with strong currents during floods, low elevation areas with schools and homes, and other places that accumulate stagnant water. Sensitive populations included children, the elderly, physically handicapped people, low-income families, and recent migrants. Flood impacts included damages to property and infrastructure, power outages, and the economic cost of rebuilding/repairs. Health impacts included outbreaks of infectious diseases, skin infections, snakebite, and injury/drowning. Adaptive capacity was weakest during the preparation and recovery stages of flooding. Participants perceived that their capacity to take action was limited by a lack of social organization, political engagement, and financial capital. People perceived that flood forecasts were too general, and instead relied on alerts via social media.
Conclusions
This study highlights the challenges and opportunities for climate change adaptation in coastal cities. Areas of special concern provide clear local policy targets. The participatory approach presented here (1) provides important context to shape local policy and interventions in Ecuador, complimenting data gathered through standard flood reports, (2) provides a voice for marginalized communities and a mechanism to raise local awareness, and (3) provides a research framework that can be adapted to other resource-limited coastal communities at risk of flooding.
Klíčová slova:
Canals – Census – Dengue fever – Ecuador – Epidemiology – Finance – Flooding – Rain
Zdroje
1. Hanson S, Nicholls R, Ranger N, Hallegatte S, Corfee-Morlot J, Herweijer C, et al. A global ranking of port cities with high exposure to climate extremes. Clim Change. 2011;104: 89–111.
2. De Sherbinin A, Schiller A, Pulsipher A. The vulnerability of global cities to climate hazards. Environ Urban. 2007;19: 39–64.
3. Nicholls RJ, Wong PP, Burkett V, Codignotto J, Hay J, McLean R, et al. Coastal systems and low-lying areas. 2007.
4. Nicholls RJ. Coastal megacities and climate change. GeoJournal. 1995;37: 369–379.
5. Dixon TH, Amelung F, Ferretti A, Novali F, Rocca F, Dokka R, et al. Space geodesy: Subsidence and flooding in New Orleans. Nature. 2006;441: 587–588. doi: 10.1038/441587a 16738651
6. Pillai P, Bradford-Ryan P, Shyamsundar P, Ahmed K, Wang L. Climate risks and adaptation in Asian coastal megacities: a synthesis report. Washington, DC: World Bank. 2010.
7. Gentry A, Lopez-Parodi J. Deforestation and increased flooding of the upper Amazon. Science. 1980;210: 1354–1356. doi: 10.1126/science.210.4476.1354 17817850
8. Bradshaw CJ, Sodhi NS, PEH KS-H, Brook BW. Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob Change Biol. 2007;13: 2379–2395.
9. Reguero BG, Losada IJ, Diaz-Simal P, Mendez FJ, Beck MW. Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS One. 2015;10: e0133409. doi: 10.1371/journal.pone.0133409 26177285
10. Nations United. Sendai Framework for Disaster Risk Reduction 2015–2030. Sendai, Japan.: United Nations; 2015 Mar p. 37. http://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf
11. Hardoy J, Lankao PR. Latin American cities and climate change: challenges and options to mitigation and adaptation responses. Curr Opin Environ Sustain. 2011;3: 158–163.
12. Charvériat C. Natural disasters in Latin America and the Caribbean: An overview of risk. IDB Work Pap No 364. 2000.
13. UNISDR P. Global survey of early warning systems: An assessment of capacities, gaps and opportunities toward building a comprehensive global early warning system for all natural hazards. Platf Promot Early Warn UNISDR—PPEW UN P. 2006;46.
14. United Nations Inter-Agency Task Force for Disaster Reduction Working Group. Global Survey of Early Warning Systems: An Assessment of Capacities, Gaps and Opportunities toward Building a Comprehensive Global Early Warning System for All Natural Hazards. United Nations; 2006 p. 56. http://www.unisdr.org/2006/ppew/info-resources/ewc3/Global-Survey-of-Early-Warning-Systems.pdf
15. Rossel F, Cadier E. El Niño and prediction of anomalous monthly rainfalls in Ecuador. Hydrol Process. 2009;23: 3253–3260. doi: 10.1002/hyp.7401
16. Calil J, Reguero BG, Zamora AR, Losada IJ, Méndez FJ. Comparative Coastal Risk Index (CCRI): A multidisciplinary risk index for Latin America and the Caribbean. PloS One. 2017;12: e0187011. doi: 10.1371/journal.pone.0187011 29095841
17. Proyección de la población Ecuatoriana por años calendario, según regiones, provincias y sexo: Periodo 2010–2020. National Institute of Statistics and Census (INEC); http://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/
18. Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J. Future flood losses in major coastal cities. Nat Clim Change. 2013;3: 802–806.
19. Hardoy JE, Mitlin D, Satterthwaite D. Environmental problems in an urbanizing world: finding solutions in cities in Africa, Asia and Latin America. Routledge; 2013.
20. Moser C, Satterthwaite D. Towards pro-poor adaptation to climate change in the urban centres of low- and middle-income countries. London, UK: International Institute for Environment and Development (IIED); 2008 p. 45 pages. https://pubs.iied.org/10564IIED/
21. SGR. Plan Nacional de Respuesta Ante Desastres (RESPONDE Ec), Resolución Num. SGR-053-2018. Secretaría de Gestión de Riesgos; 2018. https://www.gestionderiesgos.gob.ec/wp-content/uploads/downloads/2018/05/Plan-de-Respuesta-EC.pdf
22. Waldmueller JM, Nogales N, Cobey RJ. Assessment of local adaptive capacities in the context of local politics after the 2016 Ecuadorian earthquake. Int J Disaster Risk Reduct. 2019;35: 101062.
23. Twilley RR, Cárdenas W, Rivera-Monroy VH, Espinoza J, Suescum R, Armijos MM, et al. The Gulf of Guayaquil and the Guayas River Estuary, Ecuador. In: Seeliger DU, Kjerfve DB, editors. Coastal Marine Ecosystems of Latin America. Springer Berlin Heidelberg; 2001. pp. 245–263. http://link.springer.com/chapter/10.1007/978-3-662-04482-7_18
24. Hamilton SE, Stankwitz C. Examining the relationship between international aid and mangrove deforestation in coastal Ecuador from 1970 to 2006. J Land Use Sci. 2012;7: 177–202.
25. Rossel F, Cadier E, Gómez G. Las inundaciones en la zona costera ecuatoriana: causas—obras de protección existentes y previstas. L’Institut Francais D’études Andin IFE. 1996.
26. Recalde-Coronel G, Barnston AG, Gómez G. Predictability of December-April Rainfall in Coastal and Andean Ecuador. J Appl Meteorol Climatol. 2014.
27. Philander SG. El Niño, La Niña, and the Southern Oscillation. San Diego, USA: Academic Press; 1990.
28. Haimes YY. On the complex definition of risk: A systems-based approach. Risk Anal Int J. 2009;29: 1647–1654.
29. Lavell A, Oppenheimer M, Diop C, Hess J, Lempert R, Li J, et al. Climate change: new dimensions in disaster risk, exposure, vulnerability, and resilience. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2012. pp. 25–64.
30. Renn O. Concepts of risk: a classification. Social theories of risk. Westport, CT: Praeger; 1992. pp. 53–79.
31. Merz B, Hall J, Disse M, Schumann A. Fluvial flood risk management in a changing world. Nat Hazards Earth Syst Sci. 2010;10: 509–527.
32. Few R, Ahern M, Matthies F, Kovats S. Floods, health and climate change: a strategic review. 2004.
33. Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M. Natural disaster hotspots: a global risk analysis. The World Bank; 2005.
34. Turner BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, et al. A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci. 2003;100: 8074. doi: 10.1073/pnas.1231335100 12792023
35. Metzger M, Rounsevell M, Acosta-Michlik L, Leemans R, Schroter D. The vulnerability of ecosystem services to land use change. Agric Ecosyst Environ. 2006;114: 69–85.
36. Füssel H-M, Klein RJ. Climate change vulnerability assessments: an evolution of conceptual thinking. Clim Change. 2006;75: 301–329.
37. Adger WN. Vulnerability. Glob Environ Change. 2006;16: 268–281.
38. Eakin H, Luers AL. Assessing the vulnerability of social-environmental systems. Annu Rev Env Resour. 2006;31: 365–394.
39. Wilhelmi OV, Hayden MH. Connecting people and place: a new framework for reducing urban vulnerability to extreme heat. Environ Res Lett. 2010;5: 014021.
40. Gallopín GC. Linkages between vulnerability, resilience, and adaptive capacity. Glob Environ Change. 2006;16: 293–303. doi: 10.1016/j.gloenvcha.2006.02.004
41. Adelekan IO, Asiyanbi AP. Flood risk perception in flood-affected communities in Lagos, Nigeria. Nat Hazards. 2016;80: 445–469.
42. Field C, Barros V, Stocker T, Qin D, Dokken D, Ebi K, et al. A special report of working groups I and II of the intergovernmental panel on climate change. Manag Risks Extreme Events Disasters Adv Clim Change Adapt. 2012.
43. Chambers R. Poverty and livelihoods: whose reality counts? Environ Urban. 1995;7: 173–204.
44. Krantz L. The sustainable livelihood approach to poverty reduction: An introduction. Swed Int Dev Coop Agency. 2001; 25–31.
45. Desinventar: Sistema de inventario de efectos de desastres. Cali, Colombia: Corporación OSSO; 1994 2016. https://online.desinventar.org/desinventar/#ECU-DISASTER
46. Stewart Ibarra AM, Lowe R. Climate and non-climate drivers of dengue epidemics in southern coastal Ecuador. Am J Trop Med Hyg. 2013;88: 971–981. doi: 10.4269/ajtmh.12-0478 23478584
47. INEC. Censo de Poblacion y Viviendo. Instituto Nacional de Estadistica y Censos (INEC); 2010. http://www.ecuadorencifras.gob.ec/registro-de-descargas-cartograficas/
48. Stewart Ibarra AM, Munoz AG, Ryan SJ, Borbor MJ, Ayala EB, Finkelstein JL, et al. Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infect Dis. 2014;14: 610. doi: 10.1186/s12879-014-0610-4 25420543
49. Mapa de vulnerabilidad por elemento expuesto (amenazado) ante inundaciones—Canton Machala—Provincia de El Oro. Subsecretaria de Gestion de la Información y Análisis de Riesgos. Secretaría de Gestión de Riesgos; 2015.
50. Krisher LK, Krisher J, Ambuludi M, Arichabala A, Beltrán-Ayala E, Navarrete P, et al. Successful malaria elimination in the Ecuador–Peru border region: epidemiology and lessons learned. Malar J. 2016;15: 573. doi: 10.1186/s12936-016-1630-x
51. Hardoy J, Pandiella G. Urban poverty and vulnerability to climate change in Latin America. Environ Urban. 2009;21: 203–224.
52. Verner D. Reducing Poverty, Protecting Livelihoods, and Building Assets in a Changing Climate. The World Bank; 2010. doi: 10.1596/978-0-8213-8238-7
53. United Nations Human Settlements Programme (UN-Habitat). The challenge of slums: global report on human settlements, 2003. London: Earthscan Publications Ltd; 2003.
54. Verner DE Willy. Social Resilience and State Fragility in Haiti. The World Bank; 2007. doi: 10.1596/978-0-8213-7187-9
55. Fay M. The Urban Poor in Latin America. The World Bank; 2005. doi: 10.1596/0-8213-6069-8
56. Stewart Ibarra AM, Luzadis VA, Borbor-Cordova M, Silva M, Ordonez T, Beltran Ayala Efrain, et al. A social-ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC Public Health. 2014; 1135. doi: 10.1186/1471-2458-14-1135 25370883
57. Hidalgo-Bastidas JP, Boelens RA, Isch E. Hydroterritorial configuration and confrontation: The Daule-Peripa multipurpose hydraulic scheme in Coastal Ecuador. Lat Am Res Rev LARR. 2018;53: 517–534.
58. Mayoux L, Chambers R. Reversing the paradigm: quantification, participatory methods and pro‐poor impact assessment. J Int Dev. 2005 [cited 27 Aug 2019]. https://doi.org/10.1002/jid.1214
59. Stewart-Ibarra AM, Ryan SJ, Kenneson A, King CA, Abbott M, Barbachano-Guerrero A, et al. The Burden of Dengue Fever and Chikungunya in Southern Coastal Ecuador: Epidemiology, Clinical Presentation, and Phylogenetics from the First Two Years of a Prospective Study. Am J Trop Med Hyg. 2018;98: 1444–1459. doi: 10.4269/ajtmh.17-0762 29512482
60. Stewart Ibarra AM, Ryan SJ, Beltrán E, Mejía R, Silva M, Muñoz Á. Dengue Vector Dynamics (Aedes aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control. PLOS ONE. 2013;8: e78263. doi: 10.1371/journal.pone.0078263 24324542
61. A Fragile Welcome: Ecuador’s Response to the Influx of Venezuelan Refugees and Migrants—Ecuador. In: ReliefWeb [Internet]. [cited 29 Aug 2019]. https://reliefweb.int/report/ecuador/fragile-welcome-ecuador-s-response-influx-venezuelan-refugees-and-migrants
62. Brilly M, Polic M. Public perception of flood risks, flood forecasting and mitigation. 2005.
63. Van Aalst MK. The impacts of climate change on the risk of natural disasters. Disasters. 2006;30: 5–18. doi: 10.1111/j.1467-9523.2006.00303.x 16512858
64. Zielinski-Gutierrez EC, Hayden MH. A model for defining West Nile virus risk perception based on ecology and proximity. EcoHealth. 2006;3: 28–34.
65. Wiltshire A. Developing early warning systems: a checklist. Proc 3rd Int Conf Early Warning (EWC). 2006. pp. 27–19.
66. Petrova D, Koopman SJ, Ballester J, Rodó X. Improving the long-lead predictability of El Niño using a novel forecasting scheme based on a dynamic components model. Clim Dyn. 2017;48: 1249–1276.
67. Lowe R, Stewart-Ibarra AM, Petrova D, García-Díez M, Borbor-Cordova MJ, Mejía R, et al. Climate services for health: predicting the evolution of the 2016 dengue season in Machala, Ecuador. Lancet Planet Health. 2017;1: e142–e151. doi: 10.1016/S2542-5196(17)30064-5 29851600
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy