Antimicrobial resistance genotypes and phenotypes of Campylobacter jejuni isolated in Italy from humans, birds from wild and urban habitats, and poultry
Autoři:
Francesca Marotta aff001; Giuliano Garofolo aff001; Lisa di Marcantonio aff001; Gabriella Di Serafino aff001; Diana Neri aff001; Romina Romantini aff001; Lorena Sacchini aff001; Alessandra Alessiani aff001; Guido Di Donato aff001; Roberta Nuvoloni aff002; Anna Janowicz aff001; Elisabetta Di Giannatale aff001
Působiště autorů:
National Reference Laboratory for , Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
aff001; Department of Veterinary Sciences, University of Pisa, Pisa, Italy
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223804
Souhrn
Campylobacter jejuni, a common foodborne zoonotic pathogen, causes gastroenteritis worldwide and is increasingly resistant to antibiotics. We aimed to investigate the antimicrobial resistance (AMR) genotypes of C. jejuni isolated from humans, poultry and birds from wild and urban Italian habitats to identify correlations between phenotypic and genotypic AMR in the isolates. Altogether, 644 C. jejuni isolates from humans (51), poultry (526) and wild- and urban-habitat birds (67) were analysed. The resistance phenotypes of the isolates were determined using the microdilution method with EUCAST breakpoints, and AMR-associated genes and single nucleotide polymorphisms were obtained from a publicly available database. Antimicrobial susceptibility testing showed that C. jejuni isolates from poultry and humans were highly resistant to ciprofloxacin (85.55% and 76.47%, respectively), nalidixic acid (75.48% and 74.51%, respectively) and tetracycline (67.87% and 49.02%, respectively). Fewer isolates from the wild- and urban-habitat birds were resistant to tetracycline (19.40%), fluoroquinolones (13.43%), and quinolone and streptomycin (10.45%). We retrieved seven AMR genes (tet (O), cmeA, cmeB, cmeC, cmeR, blaOXA-61 and blaOXA-184) and gyrA-associated point mutations. Two major B-lactam genes called blaOXA-61 and blaOXA-184 were prevalent at 62.93% and 82.08% in the poultry and the other bird groups, respectively. Strong correlations between genotypic and phenotypic resistance were found for fluoroquinolones and tetracycline. Compared with the farmed chickens, the incidence of AMR in the C. jejuni isolates from the other bird groups was low, confirming that the food-production birds are much more exposed to antimicrobials. The improper and overuse of antibiotics in the human population and in animal husbandry has resulted in an increase in antibiotic-resistant infections, particularly fluoroquinolone resistant ones. Better understanding of the AMR mechanisms in C. jejuni is necessary to develop new strategies for improving AMR programs and provide the most appropriate therapies to human and veterinary populations.
Klíčová slova:
Antibiotic resistance – Antibiotics – Antimicrobial resistance – Bird genetics – Birds – Chickens – Poultry – Tetracyclines
Zdroje
1. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, et al. Correction: World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis.PLoSMed. 2015 Dec 23;12(12):e1001940.
2. EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) (2018). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 16 (12): 5500 doi: 10.2903/j.efsa.2018.5500
3. Kaakoush NO, Deshpande NP, Man SM, Burgos-Portugal JA, Khattak FA, Raftery MJ, et al. Transcriptomic and proteomic analyses reveal key innate immune signatures in the host response to the gastrointestinal pathogen Campylobacter concisus. Infect Immun. 2015;83(2):832–845. doi: 10.1128/IAI.03012-14 25486993
4. Mughini Gras L, Smid JH, Wagenaar JA, de Boer AG, Havelaar AH, Friesema IH, et al. Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: a combined case-control and source attribution analysis. PLoS One. 2012;7(8):e42599. Published 2012 Aug 3. doi: 10.1371/journal.pone.0042599 22880049
5. Sheppard SK, Dallas JF, Strachan NJ, MacRae M, McCarthy ND, Wilson DJ, et al. Campylobacter genotyping to determine the source of human infection. Clin Infect Dis. 2009;48(8):1072–1078. doi: 10.1086/597402 19275496
6. Di Giannatale E, Garofolo G, Alessiani A, Di Donato G, Candeloro L, Vencia W, et al. Tracing Back Clinical Campylobacter jejuni in the Northwest of Italy and Assessing Their Potential Source. Front Microbiol. 2016 Jun 13;7:887. doi: 10.3389/fmicb.2016.00887 27379033
7. Lévesque S, Frost E, Arbeit RD, Michaud S. Multilocus sequence typing of Campylobacter jejuni isolates from humans, chickens, raw milk, and environmental water in Quebec, Canada. J Clin Microbiol. 2008;46(10):3404–3411. doi: 10.1128/JCM.00042-08 18701662
8. Lindmark H, Boqvist S, Ljungström M, Agren P, Björkholm B, Engstrand L. Risk factors for campylobacteriosis: an epidemiological surveillance study of patients and retail poultry. J Clin Microbiol. 2009;47(8):2616–2619. doi: 10.1128/JCM.00826-09 19494082
9. Whitehouse CA, Young S, Li C, Hsu CH, Martin G, Zhao S. Use of whole-genome sequencing for Campylobacter surveillance from NARMS retail poultry in the United States in 2015. Food Microbiol. 2018 Aug;73:122–128. doi: 10.1016/j.fm.2018.01.018 29526197
10. Moore JE, Barton MD, Blair IS, Corcoran D, Dooley JS, Fanning S, et al. The epidemiology of antibiotic resistance in Campylobacter. Microbes Infect. 2006; 8:1955–196. doi: 10.1016/j.micinf.2005.12.030 16716632
11. Avrain L, Humbert F, L'Hospitalier R, Sanders P, Vernozy-Rozand C, Kempf I. Antimicrobial resistance in Campylobacter from broilers: association with production type and antimicrobial use. Vet Microbiol. 2003 Oct 30;96(3):267–76. doi: 10.1016/j.vetmic.2003.07.001 14559174
12. Janssen R, Krogfelt KA, Cawthraw SA, van Pelt W, Wagenaar JA, Owen RJ. Host-pathogen interactions in Campylobacter infections: the host perspective. Clin. Microbiol 2008; Rev. 21:505–518.
13. Iovine NM. Resistance mechanisms in Campylobacter jejuni. Virulence. 2013;4(3):230–240. doi: 10.4161/viru.23753 23406779
14. Blaser MJ. Campylobacter and related species. In: Mandell G.L., Bennett J.E. & Dolin R. (Eds), Principles and Practice of Infectious Diseases. 4th ed. Churchill Livingstone, New York, NY. 1995, p.1948–1956.
15. Dasti JI, Gross U, Pohl S, Lugert R, Weig M, Schmidt-Ott R. Role of the plasmid-encoded tet(O) gene in tetracycline-resistant clinical isolates of Campylobacter jejuni and Campylobacter coli. J Med Microbiol. 2007 Jun;56(Pt6):833–7.
16. Luangtongkum T, Jeon B, Han J, Plummer P, Logue CM, Zhang Q. Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiol. 2009; 4, 189–200. doi: 10.2217/17460913.4.2.189 19257846
17. Wieczorek K, Osek J. Antimicrobial resistance mechanisms among Campylobacter. BioMed Res. Int. 2013:340605. doi: 10.1155/2013/340605 June 17, 2019 23865047
18. FoodNet—Foodborne Diseases Active Surveillance Network. Centers for Disease Control and Prevention, 2012. (Accessed March 14, 2012, at http://www.cdc.gov/foodnet/.)
19. Kittl S, Kuhnert P, Hächler H, Korczak BM. Comparison of genotypes and antibiotic resistance of Campylobacter jejuni isolated from humans and slaughtered chickens in Switzerland. J Appl Microbiol 2011; 110:513–20; doi: 10.1111/j.1365-2672.2010.04906.x 21143711; http://dx.doi.org/10.1111/j.1365-2672.2010.04906.x
20. Wang G, Clark CG, Taylor TM, Pucknell C, Barton C, Price L, et al. Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp.fetus. J Clin Microbiol. 2002 Dec;40(12):4744–7. doi: 10.1128/JCM.40.12.4744-4747.2002 12454184
21. Di Giannatale E, Garofolo G, Alessiani A, Di Donato G, Candeloro L, Vencia W, et al. Tracing Back Clinical Campylobacter jejuni in the Northwest of Italy and Assessing Their Potential Source. Front Microbiol. 2016 Jun 13;7:887. doi: 10.3389/fmicb.2016.00887 27379033
22. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45(D1):D566–D573. doi: 10.1093/nar/gkw1004 27789705
23. Seemann T. Prokka: rapid prokaryotic genome annotation Bioinformatics 2014 Jul 15;30(14):2068–9. doi: 10.1093/bioinformatics/btu153 24642063
24. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015 Nov 15;31(22):3691–3. doi: 10.1093/bioinformatics/btv421 Epub 2015 Jul 20. 26198102
25. Okonechnikov K, Golosova O, Fursov M, the UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012 28: 1166–1167. doi: 10.1093/bioinformatics/bts091 22368248
26. Griggs DJ, Peake L, Johnson MM, Ghori S, Mott A, Piddock LJ. Beta-lactamase-mediated beta-lactam resistance in Campylobacter species: prevalence of Cj0299 (bla OXA-61) and evidence for a novel beta-Lactamase in C. jejuni. Antimicrob Agents Chemother. 2009;53(8):3357–3364. doi: 10.1128/AAC.01655-08 19506058
27. Noormohamed A, Fakhr MK. Prevalence and Antimicrobial Susceptibility of Campylobacter spp. in Oklahoma Conventional and Organic Retail Poultry. Open Microbiol J. 2014;8:130–137. Published 2014 Oct 31. doi: 10.2174/1874285801408010130 25408778
28. EFSA and ECDC (2018). The European union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA J. 16:e05182. doi: 10.2903/j.efsa.2018.5182
29. Woźniak A. Fluoroquinolones resistance of Campylobacter jejuni and Campylobacter coli isolated from poultry in 1994–1996 and 2005–2008 in Poland. Bulletin of the Veterinary Institute in Pulawy. 2011;55(1):15–20
30. Norström M, Hofshagen M, Stavnes T, Schau J, Lassen J, Kruse H. Antimicrobial resistance in Campylobacter jejuni from humans and broilers in Norway. Epidemiol Infect 2006; 134:127–30; doi: 10.1017/S0950268805004814 16409659; http://dx.doi.org/10.1017/S0950268805004814
31. Van Looveren M, Daube G, De Zutter L, Dumont JM, Lammens C, Wijdooghe M, et al. Antimicrobial susceptibilities of Campylobacter strains isolated from food animals in Belgium. J Antimicrob Chemother 2001; 48:235–40; doi: 10.1093/jac/48.2.235 11481294; http://dx.doi.org/10.1093/jac/48.2.235
32. Sáenz Y, Zarazaga M, Lantero M, Gastanares MJ, Baquero F, Torres C. Antibiotic resistance in Campylobacter strains isolated from animals, foods, and humans in Spain in 1997–1998. Antimicrob Agents Chemother. 2000;44(2):267–271. doi: 10.1128/aac.44.2.267-271.2000 10639348
33. Skjøt-Rasmussen L, Ethelberg S, Emborg HD, Agersø Y, Larsen LS, Nordentoft S, et al. Trends in occurrence of antimicrobial resistance in Campylobacter jejuni isolates from broiler chickens, broiler chicken meat, and human domestically acquired cases and travel associated cases in Denmark. Int J Food Microbiol. 2009 May 31; 131(2–3):277–9. doi: 10.1016/j.ijfoodmicro.2009.03.006 19345436
34. Hakanen A, Jousimies-Somer H, Siitonen A, Huovinen P, Kotilainen P. Fluoroquinolone resistance in Campylobacter jejuni isolates in travelers returning to Finland: association of ciprofloxacin resistance to travel destination. Emerg Infect Dis. 2003 Feb; 9(2):267–70. doi: 10.3201/eid0902.020227 12604004
35. Haruna M, Sasaki Y, Murakami M, Ikeda A, Kusukawa M, Tsujiyama Y, et al. Prevalence and antimicro-bial susceptibility of Campylobacter in broiler flocks in Japan. Zoonoses Public Health 2012; 59:241–5; doi: 10.1111/j.1863-2378.2011.01441.x 22103704; http://dx.doi.org/10.1111/j.1863-2378.2011.01441.x
36. Asai T, Harada K, Ishihara K, Kojima A, Sameshima T, Tamura Y, et al. Association of antimicrobial resistance in Campylobacter isolated from food-producing animals with antimicrobial use on farms. Jpn J Infect Dis 2007; 60:290–4; 17881869.
37. Mattheus W, Botteldoorn N, Heylen K, Pochet B, Dierick K. Trend analysis of antimicrobial resistance in Campylobacter jejuni and Campylobacter coli isolated from Belgian pork and poultry meat products using surveillance data of 2004–2009. Foodborne Pathog. 2012; Dis. 9, 465–472. doi: 10.1089/fpd.2011.1042 22510058
38. Marotta F, Garofolo G, Di Donato G, Aprea G, Platone I, Cianciavicchia S, et al. Population Diversity of Campylobacter jejuni in Poultry and Its Dynamic of Contamination in Chicken Meat. Biomed Res Int. 2015;2015:859845. doi: 10.1155/2015/859845 26543870
39. Giacomelli M., Salata C., Martini M., Montesissa C., Piccirillo A. (2014). Antimicrobial resistance of Campylobacter jejuni and Campylobacter coli from poultry in Italy. Microb. Drug Resist. 20, 181–188. doi: 10.1089/mdr.2013.0110 24320689
40. Elhadidy M, Miller WG, Arguello H, Álvarez-Ordóñez A, Duarte A, Dierick K, et al. Genetic Basis and Clonal Population Structure of Antibiotic Resistance in Campylobacter jejuni Isolated From Broiler Carcasses in Belgium. Front Microbiol. 2018 May 17;9:1014. doi: 10.3389/fmicb.2018.01014 29867900
41. Habib I, Miller WG, Uyttendaele M, Houf K, De Zutter L. Clonal population structure and antimicrobial resistance of Campylobacter jejuni in chicken meat from Belgium. Appl Environ Microbiol. 2009;75(13):4264–4272. doi: 10.1128/AEM.00168-09 19411429
42. Lapierre L, Gatica MA, Riquelme V, Vergara C, Yañez J M, San Martin B. Characterization of antimicrobial susceptibility and its association with virulence genes related to adherence, invasion, and cytotoxicity in Campylobacter jejuni and Campylobacter coli isolates from animals, meat, and humans. Microbial Drug Resist.2016; 22, 432–444. doi: 10.1089/mdr.2015.0055 26779841
43. Cha W, Mosci RE, Wengert SL, Venegas Vargas C, Rust SR, Bartlett PC, et al. Comparing the genetic diversity and antimicrobial resistance profiles of Campylobacter jejuni recovered from cattle and humans. Front. Microbiol. 2017; 8:818. doi: 10.3389/fmicb.2017.00818 28536568
44. Riley A, Eshaghi A, Olsha R. Allen VG, Patel SN. Antibiotic susceptibility of clinical isolates of Campylobacter jejuni and Campylobacter coli in Ontario, Canada during 2011–2013. Diagn. Microbiol. Infect. Dis.2015; 83, 292–294. doi: 10.1016/j.diagmicrobio.2015.07.020 26320936
45. Kim JS, Lee MY, Kim SJ, Jeon SE, Cha I, Hong S. High-level ciprofloxacin-resistant Campylobacter jejuni isolates circulating in humans and animals in Incheon, Republic of Korea. Zoonozes Public Health 2016; 63, 545–554. doi: 10.1111/zph.12262 27234414
46. Ghunaim H, Behnke JM, Aigha I, Sharma A, Doiphode SH, Deshmukh A. Analysis of resistance to antimicrobials and presence of virulence/stress response genes in Campylobacter isolates from patients with severe diarrhoea. PLoS ONE 2015; 10:e0119268. doi: 10.1371/journal.pone.0119268 25781009
47. Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren E, Johnson AP, et al. Review Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother. 2010 Apr; 65(4):601–4. doi: 10.1093/jac/dkq037 20181573
48. Bolton D, Patriarchi A, Fox Á, Fanning S. A study of the molecular basis of quinolone and macrolide resistance in a selection of Campylobacter isolates from intensive poultry flocks. Food control. 2013; 30(1), 222–226.
49. Lin J, Akiba M, Sahin O Zhang Q. CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob. Agents Chemother. 2005a; 49, 1067–1075.
50. Lin J, Cagliero C, Guo B, Barton Y W, Maurel MC, Payot S, et al. Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J. Bacteriol. 2005b; 187, 7417–7424.
51. Grinnage-Pulley T, Zhang Q. Genetic Basis and Functional Consequences of Differential Expression of the CmeABC Efflux Pump in Campylobacter jejuni Isolates. PLoS One. 2015; 10(7):e0131534. doi: 10.1371/journal.pone.0131534 26132196
52. Yan M, Sahin O, Lin J, Zhang Q. 2006. Role of the CmeABC efflux pump in the emergence of fluoroquinolone-resistant Campylobacter under selection pressure. J Antimicrob Chemother 58:1154–1159. doi: 10.1093/jac/dkl412 17023497
53. Zhang T, Cheng Y, Luo Q, Lu Q, Dong J, Zhang R, et al. Correlation between gyrA and CmeR Box Polymorphism and Fluoroquinolone Resistance in Campylobacter jejuni Isolates in China. Antimicrob Agents Chemother. 2017 Jun 27;61(7).
54. Alfredson DA, Korolik V. 2005. Isolation and expression of a novel molecular class D beta-lactamase, OXA-61, from Campylobacter jejuni. Antimicrob. Agents Chemother., 49 (2005), pp. 2515–2518 doi: 10.1128/AAC.49.6.2515-2518.2005 15917560
55. Zhao S, Tyson GH, Chen Y, Li C, Mukherjee S, Young S, et al. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp. Appl Environ Microbiol. 2015;82(2):459–466. Published 2015 Oct 30. doi: 10.1128/AEM.02873-15 26519386
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy