MANET 3.0: Hierarchy and modularity in evolving metabolic networks
Autoři:
Fizza Mughal aff001; Gustavo Caetano-Anollés aff001
Působiště autorů:
Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
aff001; Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224201
Souhrn
Enzyme recruitment is a fundamental evolutionary driver of modern metabolism. We see evidence of recruitment at work in the metabolic Molecular Ancestry Networks (MANET) database, an online resource that integrates data from KEGG, SCOP and structural phylogenomic reconstruction. The database, which was introduced in 2006, traces the deep history of the structural domains of enzymes in metabolic pathways. Here we release version 3.0 of MANET, which updates data from KEGG and SCOP, links enzyme and PDB information with PDBsum, and traces evolutionary information of domains defined at fold family level of SCOP classification in metabolic subnetwork diagrams. Compared to SCOP folds used in the previous versions, fold families are cohesive units of functional similarity that are highly conserved at sequence level and offer a 10-fold increase of data entries. We surveyed enzymatic, functional and catalytic site distributions among superkingdoms showing that ancient enzymatic innovations followed a biphasic temporal pattern of diversification typical of module innovation. We grouped enzymatic activities of MANET into a hierarchical system of subnetworks and mesonetworks matching KEGG classification. The evolutionary growth of these modules of metabolic activity was studied using bipartite networks and their one-mode projections at enzyme, subnetwork and mesonetwork levels of organization. Evolving metabolic networks revealed patterns of enzyme sharing that transcended mesonetwork boundaries and supported the patchwork model of metabolic evolution. We also explored the scale-freeness, randomness and small-world properties of evolving networks as possible organizing principles of network growth and diversification. The network structure shows an increase in hierarchical modularity and scale-free behavior as metabolic networks unfold in evolutionary time. Remarkably, this evolutionary constraint on structure was stronger at lower levels of metabolic organization. Evolving metabolic structure reveals a ‘principle of granularity’, an evolutionary increase of the cohesiveness of lower-level parts of a hierarchical system. MANET is available at http://manet.illinois.edu.
Klíčová slova:
Enzyme metabolism – Enzymes – Metabolic networks – Metabolic pathways – Molecular evolution – Protein domains – Xenobiotic metabolism – Enzyme structure
Zdroje
1. Jensen RA. Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 1976; doi: 10.1146/annurev.mi.30.100176.002205 791073
2. Caetano-Anollés G, Caetano-Anollés D. An evolutionarily structured universe of protein architecture. Genome Res. 2003;13: 1563–71. doi: 10.1101/gr.1161903 12840035
3. Nasir A, Naeem A, Khan MJ, Nicora HDL, Caetano-Anollés G. Annotation of protein domains reveals remarkable conservation in the functional make up of proteomes across superkingdoms. Genes (Basel). 2011;2: 869–911. doi: 10.3390/genes2040869 24710297
4. Caetano-Anollés G, Kim HS, Mittenthal JE. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc Natl Acad Sci U S A. 2007;104: 9358–63. doi: 10.1073/pnas.0701214104 17517598
5. Caetano-Anollés K, Caetano-Anollés G. Structural phylogenomics reveals gradual evolutionary replacement of abiotic chemistries by protein enzymes in purine metabolism. PLoS One. 2013;8: e59300. doi: 10.1371/journal.pone.0059300 23516625
6. Kim HS, Mittenthal JE, Caetano-anollés G. MANET: tracing evolution of protein architecture in metabolic networks. BMC Bioinformatics. 2006;7: 351. doi: 10.1186/1471-2105-7-351 16854231
7. Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G. Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res. 2007;17: 1572–85. doi: 10.1101/gr.6454307 17908824
8. Caetano-Anollés G, Wang M, Caetano-Anollés D, Mittenthal JE. The origin, evolution and structure of the protein world. Biochem J. 2009;417: 621–37. doi: 10.1042/BJ20082063 19133840
9. Kim KM, Caetano-Anollés G. The evolutionary history of protein fold families and proteomes confirms that the archaeal ancestor is more ancient than the ancestors of other superkingdoms. BMC Evol Biol. BioMed Central; 2012;12: 13. doi: 10.1186/1471-2148-12-13 22284070
10. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32: D277–80. doi: 10.1093/nar/gkh063 14681412
11. Goldman AD, Baross JA, Samudrala R. The enzymatic and metabolic capabilities of early life. PLoS One. Public Library of Science; 2012;7: e39912. doi: 10.1371/journal.pone.0039912 22970111
12. Goldman AD, Samudrala R, Baross J a. The evolution and functional repertoire of translation proteins following the origin of life. Biol Direct. 2010;5: 15. doi: 10.1186/1745-6150-5-15 20377891
13. Gilbert W. Origin of Life: The RNA World. Nature. 1986; doi: 10.1038/319618a0
14. Laskowski RA, Chistyakov V V, Thornton JM. PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res. 2005;33: D266–8. doi: 10.1093/nar/gki001 15608193
15. de Beer TAP, Berka K, Thornton JM, Laskowski RA. PDBsum additions. Nucleic Acids Res. 2014;42: D292–6. doi: 10.1093/nar/gkt940 24153109
16. Mughal F. MANET and the evolution, structure and function of biological networks [Internet]. University of Illinois at Urbana-Champaign. 2014. Available: https://www.ideals.illinois.edu/handle/2142/50497
17. Mittenthal J, Caetano-Anollés D, Caetano-Anollés G. Biphasic patterns of diversification and the emergence of modules. Front Genet. Frontiers; 2012;3: 147. doi: 10.3389/fgene.2012.00147 22891076
18. Csardi G NT. The igraph software package for complex network research. InterJournal. 2006;
19. Bartels R. The rank version of von Neumann’s ratio test for randomness. J Am Stat Assoc. 1982;77: 40. doi: 10.2307/2287767
20. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási a L. The large-scale organization of metabolic networks. Nature. 2000;407: 651–4. doi: 10.1038/35036627 11034217
21. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL, Hartwell LH, et al. Hierarchical organization of modularity in metabolic networks. Science. American Association for the Advancement of Science; 2002;297: 1551–5. doi: 10.1126/science.1073374 12202830
22. Erdos P, Rényi A. On random graphs I. Publ Math Debrecen. 1959;
23. Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature. 1998;393: 440–2. doi: 10.1038/30918 9623998
24. Barabasi A-L, Albert R. Emergence of scaling in random networks. Science (80-). 1999;286: 509–512.
25. Aziz MF, Caetano-Anollés K, Caetano-Anollés G. The early history and emergence of molecular functions and modular scale-free network behavior. Sci Rep. Nature Publishing Group; 2016; 25058. doi: 10.1038/srep25058 27121452
26. Nasir A, Kim K, Caetano-Anolles G. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol. BioMed Central; 2012;12: 156. doi: 10.1186/1471-2148-12-156 22920653
27. Vogel C, Chothia C. Protein family expansions and biological complexity. PLoS Comput Biol. 2006;2: e48. doi: 10.1371/journal.pcbi.0020048 16733546
28. Caetano-Anollés D, Kim KM, Mittenthal JE, Caetano-Anollés G. Proteome evolution and the metabolic origins of translation and cellular life. J Mol Evol. 2011;72: 14–33. doi: 10.1007/s00239-010-9400-9 21082171
29. Caetano-Anollés G, Kim KM, Caetano-Anollés D. The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis. J Mol Evol. 2012;74: 1–34. doi: 10.1007/s00239-011-9480-1 22210458
30. Ribeiro AJM, Holliday GL, Furnham N, Tyzack JD, Ferris K, Thornton JM. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. Nucleic Acids Res. Oxford University Press; 2018;46: D618–D623. doi: 10.1093/nar/gkx1012 29106569
31. Nasir A, Kim KM, Caetano-Anollés G. Global patterns of protein domain gain and loss in superkingdoms. PLoS Comput Biol. 2014;10: e1003452. doi: 10.1371/journal.pcbi.1003452 24499935
32. Caetano-Anollés G, Nasir A. Benefits of using molecular structure and abundance in phylogenomic analysis. Front Genet. 2012;3: 172. doi: 10.3389/fgene.2012.00172 22973296
33. Grishin N V. Fold Change in Evolution of Protein Structures. J Struct Biol. Academic Press; 2001;134: 167–185. doi: 10.1006/jsbi.2001.4335 11551177
34. Wang M, Jiang Y-Y, Kim KM, Qu G, Ji H-F, Mittenthal JE, et al. A universal molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation. Mol Biol Evol. 2011;28: 567–82. doi: 10.1093/molbev/msq232 20805191
35. Zhang H-Y, Qin T, Jiang Y-Y, Caetano-Anollés G. Structural phylogenomics uncovers the early and concurrent origins of cysteine biosynthesis and iron-sulfur proteins. J Biomol Struct Dyn. 2012;30: 542–545. doi: 10.1080/07391102.2012.687520 22731683
36. Harish A, Caetano-Anollés G. Ribosomal History Reveals Origins of Modern Protein Synthesis. Proulx SR, editor. PLoS One. Public Library of Science; 2012;7: e32776. doi: 10.1371/journal.pone.0032776 22427882
37. Tal G, Boca SM, Mittenthal J, Caetano-Anollés G. A Dynamic Model for the Evolution of Protein Structure. J Mol Evol. 2016;82: 230–243. doi: 10.1007/s00239-016-9740-1 27146880
38. Wang M, Caetano-Anollés G. The Evolutionary Mechanics of Domain Organization in Proteomes and the Rise of Modularity in the Protein World. Structure. Cell Press; 2009;17: 66–78. doi: 10.1016/j.str.2008.11.008 19141283
39. Kim HS, Mittenthal JE, Caetano-Anollés G. Widespread recruitment of ancient domain structures in modern enzymes during metabolic evolution. J Integr Bioinform. 2013;10: 214. doi: 10.2390/biecoll-jib-2013-214 23406778
40. Morowitz HJ. A theory of biochemical organization, metabolic pathways, and evolution. Complexity. 1999;4: 39–53.
41. Hartman H. Speculations on the origin and evolution of metabolism. J Mol Evol. 1975;4: 359–70. Available: http://www.ncbi.nlm.nih.gov/pubmed/1206724 doi: 10.1007/bf01732537 1206724
42. Peregrín-Alvarez JM, Sanford C, Parkinson J. The conservation and evolutionary modularity of metabolism. Genome Biol. 2009;10: R63. doi: 10.1186/gb-2009-10-6-r63 19523219
43. Guimerà R, Nunes Amaral LA. Functional cartography of complex metabolic networks. Nature. Nature Publishing Group; 2005;433: 895–900. doi: 10.1038/nature03288 15729348
44. Stone MJ, Williams DH. On the evolution of functional secondary metabolites (natural products). Mol Microbiol. 1992;6: 29–34. Available: http://www.ncbi.nlm.nih.gov/pubmed/1738312 doi: 10.1111/j.1365-2958.1992.tb00834.x 1738312
45. Firn RD, Jones CG. MicroOpinion The evolution of secondary metabolism ± a unifying model. 2000;37. doi: 10.1046/j.1365-2958.2000.02098.x 10972818
46. Caetano-Anollés G, Yafremava LS, Gee H, Caetano-Anollés D, Kim HS, Mittenthal JE. The origin and evolution of modern metabolism. Int J Biochem Cell Biol. 2009;41: 285–97. doi: 10.1016/j.biocel.2008.08.022 18790074
47. Light S, Kraulis P, Elofsson A. Preferential attachment in the evolution of metabolic networks. BMC Genomics. 2005;6: 159. doi: 10.1186/1471-2164-6-159 16281983
48. Wagner A, Fell DA. The small world inside large metabolic networks. Proceedings Biol Sci. The Royal Society; 2001;268: 1803–10. doi: 10.1098/rspb.2001.1711 11522199
49. Barabási A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. Nature Publishing Group; 2004;5: 101–113. doi: 10.1038/nrg1272 14735121
50. Junker BH, Schreiber F. Analysis of biological networks. Wiley-Interscience; 2008.
51. Ravasz E, Barabási A-L. Hierarchical organization in complex networks. Phys Rev E. American Physical Society; 2003;67: 026112. doi: 10.1103/PhysRevE.67.026112 12636753
52. Caetano-Anollés G, Aziz F, Mughal F, Gräter F, Koç I, Caetano-Anollés K, et al. Empedocles’ ‘double tale’ explains hierarchical modularity in evolving networks. Ann N Y Acad Sci. 2019;In Review.
53. Tawfik DS. Messy biology and the origins of evolutionary innovations. Nat Chem Biol 2010 611. Nature Publishing Group; 2010;
54. Schmidt S, Sunyaev S, Bork P, Dandekar T. Metabolites: a helping hand for pathway evolution? Trends Biochem Sci. Charles Griffin & Company, London & High Wycombe; 2003;28: 336–341. doi: 10.1016/S0968-0004(03)00114-2 12826406
55. Nagano N, Orengo CA, Thornton JM. One fold with many functions: the evolutionary relationships between TIM barrel families Based on their sequences, structures and functions. J Mol Biol. 2002;321: 741–765. doi: 10.1016/s0022-2836(02)00649-6 12206759
56. Morowitz HJ, Kostelnik JD, Yang J, Cody GD. The origin of intermediary metabolism. Proc Natl Acad Sci U S A. 2000;97: 7704–8. doi: 10.1073/pnas.110153997 10859347
57. Allen JF. A redox switch hypothesis for the origin of two light reactions in photosynthesis. FEBS Lett. 2005;579: 963–968. doi: 10.1016/j.febslet.2005.01.015 15710376
58. Allen JF. Why chloroplasts and mitochondria contain genomes. Comp Funct Genomics. Hindawi; 2003;4: 31–6. doi: 10.1002/cfg.245 18629105
59. Kim KM, Qin T, Jiang Y-Y, Chen L-L, Xiong M, Caetano-Anollés D, et al. Protein domain structure uncovers the origin of aerobic metabolism and the rise of planetary oxygen. Structure. 2012;20: 67–76. doi: 10.1016/j.str.2011.11.003 22244756
60. Simon HA. Models of bounded rationality. Cambridge, MA: MIT Press; 1997.
61. Simon HA. The architecture of complexity. Proc Amer Phil Soc. 1962;106: 467–482.
62. Lo Conte L, Ailey B, Hubbard TJ, Brenner SE, Murzin AG, Chothia C. SCOP: a structural classification of proteins database. Nucleic Acids Res. 2000;28: 257–9. doi: 10.1093/nar/28.1.257 10592240
63. Kim KM, Caetano-Anollés G. The evolutionary history of protein fold families and proteomes confirms that the archaeal ancestor is more ancient than the ancestors of other superkingdoms. BMC Evol Biol. BioMed Central Ltd; 2012;12: 13. doi: 10.1186/1471-2148-12-13 22284070
64. Gough J, Chothia C. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res. 2002;30: 268–72. doi: 10.1093/nar/30.1.268 11752312
65. Eddy SR. Accelerated profile HMM searches. Pearson WR, editor. PLoS Comput Biol. 2011;7: e1002195. doi: 10.1371/journal.pcbi.1002195 22039361
66. Lundh F, Ellis M. Python imaging library (PIL) [Internet]. 2012. Available: http://www.pythonware.com/products/pil/
67. Caeiro F, Mateus A. Package “randtests.” R Help. 2015.
68. Humphries MD, Gurney K. Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. Sporns O, editor. PLoS One. Public Library of Science; 2008;3: e0002051. doi: 10.1371/journal.pone.0002051 18446219
69. Ward JH. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association. 1963. pp. 236–244. doi: 10.1080/01621459.1963.10500845
70. Placzek S, Schomburg I, Chang A, Jeske L, Ulbrich M, Tillack J, et al. BRENDA in 2017: new perspectives and new tools in BRENDA. Nucleic Acids Res. Oxford University Press; 2017;45: D380–D388. doi: 10.1093/nar/gkw952 27924025
71. Federhen S. The NCBI taxonomy database. Nucleic Acids Res. Oxford University Press; 2012;40: D136–43. doi: 10.1093/nar/gkr1178 22139910
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy