Membrane associated proteins of two Trichomonas gallinae clones vary with the virulence
Autoři:
María del Carmen Martínez-Herrero aff001; María Magdalena Garijo-Toledo aff001; Fernando González aff002; Ivana Bilic aff003; Dieter Liebhart aff003; Petra Ganas aff003; Michael Hess aff003; María Teresa Gómez-Muñoz aff004
Působiště autorů:
Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia, Spain
aff001; GREFA—Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat, Majadahonda, Madrid, Spain
aff002; Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
aff003; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224032
Souhrn
Oropharyngeal avian trichomonosis is mainly caused by Trichomonas gallinae, a protozoan parasite that affects the upper digestive tract of birds. Lesions of the disease are characterized by severe inflammation which may result in fatality by starvation. Two genotypes of T. gallinae were found to be widely distributed in different bird species all over the world. Differences in the host distribution and association with lesions of both genotypes have been reported. However, so far no distinct virulence factors of this parasite have been described and studies might suffer from possible co-infections of different genotypes. Therefore, in this paper, we analyzed the virulence capacity of seven clones of the parasite, established by micromanipulation, representing the two most frequent genotypes. Clones of both genotypes caused the maximum score of virulence at day 3 post-inoculation in LMH cells, although significant higher cytopathogenic score was found in ITS-OBT-Tg-1 genotype clones at days 1 and 2, as compared to clones with ITS-OBT-Tg-2. By using one representative clone of each genotype, a comparative proteomic analysis of the membrane proteins enriched fraction has been carried out by a label free approach (Data available via ProteomeXchange: PXD013115). The analysis resulted in 302 proteins of varying abundance. In the clone with the highest initial virulence, proteins related to cell adhesion, such as an immuno-dominant variable surface antigen, a GP63-like protein, an armadillo/beta-catenin-like repeat protein were found more abundant. Additionally, Ras superfamily proteins and calmodulins were more abundant, which might be related to an increased activity in the cytoskeleton re-organization. On the contrary, in the clone with the lowest initial virulence, larger numbers of the identified proteins were related to the carbohydrate metabolism. The results of the present work deliver substantial differences between both clones that could be related to feeding processes and morphological changes, similarly to the closely related pathogen Trichomonas vaginalis.
Klíčová slova:
Cell metabolism – DNA-binding proteins – Metabolic processes – Protein domains – Protein metabolism – Trichomonas vaginalis – DNA metabolism
Zdroje
1. Amin A, Bilic I, Liebhart D, Hess M. Trichomonads in birds–a review. Parasitol. 2014; 41: 733–747.
2. Gerhold RW, Yabsley MJ, Smith AJ, Ostergaard E, Mannan W, Cann JD, et al. Molecular characterization of the Trichomonas gallinae morphologic complex in the United States. J Parasitol. 2008;94: 1335–1341. doi: 10.1645/GE-1585.1 18576862
3. Sansano-Maestre J, Garijo-Toledo MM, Gómez-Muñoz MT. Prevalence and genotyping of Trichomonas gallinae in pigeons and birds of prey. Av Pathol. 2009;38: 201–207.
4. Grabensteiner E, Bilic I, Kolbe T, Hess M. Molecular analysis of clonal trichomonad isolates indicate the existence of heterogenic species present in different birds and within the same host. Vet Parasitol. 2010;172: 53–64. doi: 10.1016/j.vetpar.2010.04.015 20471174
5. Ecco R, Preis IS, Vilela DA, Luppi MM, Malta MC, Beckstead RB, et al. Molecular confirmation of Trichomonas gallinae and other parabasalids from Brazil using the 5.8S and ITS-1 rRNA regions. Vet Par. 2012;190: 36–42.
6. Martínez-Herrero MC, Sansano-Maestre J, López Márquez I, Obón E, Ponce C, González J, et al. Genetic characterization of oropharyngeal trichomonad isolates from wild birds indicates that genotype is associated with host species, diet and presence of pathognomonic lesions. Av Pathol. 2014;43: 535–546.
7. Anderson NL, Grahn RA, Van Hoosear K, BonDurant RH. Studies of trichomonad protozoa in free ranging songbirds: prevalence of Trichomonas gallinae in house finches (Carpodacus mexicanus) and corvids and a novel trichomonad in mockingbirds (Mimus polyglottos). Vet Parasitol. 2009;161: 178–86. doi: 10.1016/j.vetpar.2009.01.023 19278788
8. Girard YA, Rogers KH, Gerhold R, Land KM, Lenaghan SC, Woods LW, et al. Trichomonas stableri n. sp., an agent of trichomonosis in Pacific Coast band-tailed pigeons (Patagioenas fasciata monilis). Int J Parasitol Parasit Wildl. 2013; 3: 32–40.
9. Girard YA, Rogers KH, Woods LW, Chouicha N, Miller WA, Johnson CK. Dual-pathogen etiology of avian trichomonosis in a declining band-tailed pigeon population. Infect Genet Evol. 2014;24: 146–156. doi: 10.1016/j.meegid.2014.03.002 24632451
10. Martínez-Díaz RA, Ponce-Gordo F, Rodríguez-Arce I, Martínez-Herrero MC, González-González F, Molina-López RA, et al. Trichomonas gypaetinii n. sp., a new trichomonad from the upper gastrointestinal tract of scavenging birds of prey. Parasitol Res. 2015;114: 101–112. doi: 10.1007/s00436-014-4165-5 25273632
11. Sansano-Maestre J, Martínez-Herrero MM, Garijo-Toledo MM, Gómez-Muñoz MT. RAPD analysis and sequencing of ITS1/5.8srRNA/ITS2 and Fe-hydrogenase as tools for genetic classification of potentially pathogenic isolates of Trichomonas gallinae. Res Vet Sci. 2016; 107: 182–189. doi: 10.1016/j.rvsc.2016.05.016 27473993
12. Lawson B, Cunningham AA, Chantrey J, Hughes LA, John SK, Bunbury N, et al. A clonal strain of Trichomonas gallinae is the aetiologic agent of an emerging avian epidemic disease. Infect Genet Evol. 2011;11: 1638–1645. doi: 10.1016/j.meegid.2011.06.007 21712099
13. Chi JF, Lawson B, Durrant C, Beckmann K, John S, Alrefaei AF, et al. The finch epidemic strain of Trichomonas gallinae is predominant in British non-passerines. Parasitol. 2013;140: 1234–1245.
14. Amin A, Bilic I, Berger E, Hess M. Trichomonas gallinae, in comparison to Tetratrichomonas gallinarum, induces distinctive cytopathogenic effects in tissue cultures Vet. Parasitol. 2012;186: 196–206. doi: 10.1016/j.vetpar.2011.11.037 22172581
15. Amin A, Nöbauer K, Patzl M, Berger E, Hess M, Bilic I. Cysteine peptidases, secreted by Trichomonas gallinae, are involved in the cytopathogenic effects on a permanent chicken liver cell culture. PLoS One. 2012;7: e37417. doi: 10.1371/journal.pone.0037417 22649527
16. González-Díaz H, Prado-Prado F, García-Mera X, Alonso N, Abeijón P, Caamaño O, et al. MIND-BEST: Web server for drugs and target discovery; Design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae. J Proteome Res. 2011;10: 1698–1718. doi: 10.1021/pr101009e 21184613
17. Hirt RP, Noel CJ, Sicheritz-Ponten T, Tachezy J, Fiori PL. Trichomonas vaginalis surface proteins: a view from the genome. Trends Parasitol. 2007;23: 540–547. doi: 10.1016/j.pt.2007.08.020 17962075
18. Cuervo P, Cupolillo E, Britto C, González LJ, Costa e Silva-Filho F, Coutinho Lopes L, et al. Differential soluble expression between Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes. J Proteomics 2008;71: 109–122. doi: 10.1016/j.jprot.2008.01.010 18541479
19. De Miguel N, Lustig G, Twu O, Chattopadhyay A, Wohlschlegel JA, Johnson PJ. Proteome analysis of the surface of Trichomonas vaginalis reveals novel proteins and strain-dependent differential expression. Mol Cell Proteomics. 2010;9: 1554–1566. doi: 10.1074/mcp.M000022-MCP201 20467041
20. Ma L, Meng Q, Cheng W, Sung Y, Tang P, Hu S, et al. Involvement of the GP63 protease in infection of Trichomonas vaginalis. Parasitol Res. 2011;109: 71–79. doi: 10.1007/s00436-010-2222-2 21221643
21. Ryan CM, de Miguel N, Johnson PJ. Trichomonas vaginalis: current understanding of host-parasite interactions. Ess Biochem. 2001;51: 161–175.
22. Dias-Lopes G, Wisniewski JR, Pinho de Souza N, Vidal VE, Padrón G, Britto C, et al. In-Depth quantitative proteomic analysis of trophozoites and pseudocysts of Trichomonas vaginalis. J Proteom Res. 2018;17: 3704–3718.
23. Huang K-Y, Huang P-J, Ku F-M, Lin R, Alderete JF, Tang P. Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infect Immun. 2012;80: 3900–3911. doi: 10.1128/IAI.00611-12 22927047
24. Amin A, Neubauer C, Liebhart D, Grabensteiner E, Hess M. Axenization and optimization of in vitro growth of clonal cultures of Tetratrichomonas gallinarum and Trichomonas gallinae. Exp Parasitol. 2010; 124: 202–208. doi: 10.1016/j.exppara.2009.09.014 19766633
25. Felleisen RS. Comparative sequence analysis of 5.8SrRNA genes and internal transcribed spacer (ITS) regions of Trichomonadid protozoa. Parasitol. 1997;115: 111–119.
26. Ganas P, Jaskulska B, Lawson B, Zadravec M, Hess M, Bilic I. Multi-locus sequence typing confirms the clonality of Trichomonas gallinae isolates circulating in European finches. Parasitology.2014;141: 652–661. doi: 10.1017/S0031182013002023 24476813
27. Sechi S, Chait BT. A method to define the carboxyl terminal of proteins. Anal Chem. 2000;72: 3374–3378. doi: 10.1021/ac000045i 10939415
28. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019; 47:D442–D450. doi: 10.1093/nar/gky1106 30395289
29. Shannon P, Markiel A, Ozier O, Baliga N. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13: 2948–2950.
30. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315: 207–212. doi: 10.1126/science.1132894 17218520
31. Hernández-Sánchez J, Fonseca-Liñán R, Salinas-Tobón M del R, Ortega-Pierres G. Giardia duodenalis: adhesión-deficient clones have reduced ability to establish infection in Mongolian gerbils. Exp Parasitol. 2008;119: 364–372. doi: 10.1016/j.exppara.2008.03.010 18456259
32. Emmanuel M, Nakano YS, Nozaki T Datta S. Small GTPase Rab21 mediates fibronectin induced actin reorganization in Entamoeba histolytica: implications in pathogen invasion. PLoS Pathog. 2015;11: e1004666. doi: 10.1371/journal.ppat.1004666 25730114
33. Colingridge Peter W., Brown Robert W.B., Ginger Michael L. Moonlighting enzymes in parasitic protozoa. Parasitology 2009;138: 1467–1475.
34. Amblee V, Jeffery CJ. Physical features of intracellular proteins that moonlight o the cell surface. PLoS One. 2015;10: e0130575. doi: 10.1371/journal.pone.0130575 26110848
35. Tewari R, Bailes E, Bunting KA, Coates JC. Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol. 2010;20: 470–481. doi: 10.1016/j.tcb.2010.05.003 20688255
36. Field MC, Ali BRS and Field H. GTPases in protozoan parasites: tools for cell biology chemotherapy. Parasitol Today. 1999;15: 365–71.29. doi: 10.1016/s0169-4758(99)01499-4 10461165
37. Bosch DE, Siderovski DP. G protein signaling in the parasite Entamoeba histolytica. Exp Mol Med. 2013;45: e15. doi: 10.1038/emm.2013.30 23519208
38. Alvarado ME, Wasserman M. Calmodulin expression during Giardia intestinalis differentiation and identification of calmodulin-binding proteins during the trophozoite stage. Parasitol Res. 2012;110: 1371–1380. doi: 10.1007/s00436-011-2637-4 21927871
39. Aslam S, Bhattacharya S, Bhattacharya A. The Calmodulin-like calcium binding protein EhCaBP3 of Entamoeba histolytica regulates phagocytosis and is involved in actin dynamics. PLoS Pathog. 2012;8: e1003055. doi: 10.1371/journal.ppat.1003055 23300437
40. Huang KY, Chen YY, Fang YK, Cheng WH, Cheng CC, Chen YC, et al. Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim Biophys Acta. 2014. 1840; 53–64. doi: 10.1016/j.bbagen.2013.08.008 23958562
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy