CCR5 receptor antagonism inhibits hepatitis C virus (HCV) replication in vitro
Autoři:
Jason T. Blackard aff001; Ling Kong aff001; Susan D. Rouster aff001; Rebekah Karns aff002; Paul S. Horn aff003; Shyam Kottilil aff005; M. Tarek Shata aff001; Kenneth E. Sherman aff001
Působiště autorů:
Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
aff001; Digestive Health Center, Cincinnati Children’s Hospital, Cincinnati, OH, United States of America
aff002; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
aff003; Neurology Division, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
aff004; University of Maryland, Baltimore, MD, United States of America
aff005
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224523
Souhrn
Background and aim
The hepatitis C virus (HCV) is a single-strand RNA virus that infects millions of people worldwide. Recent advances in therapy have led to viral cure using two- and three- drug combinations of direct acting inhibitors of viral replication. CCR5 is a chemokine receptor that is expressed on hepatocytes and represents a key co-receptor for HIV. We evaluated the effect of CCR5 blockade or knockdown on HCV replication in Huh7.5JFH1 cells.
Methods
Cells were exposed to varying concentrations of maraviroc (CCR5 inhibitor), cenicriviroc (CCR2/CCR5 inhibitor), sofosbuvir (nucleotide polymerase inhibitor), or raltegravir (HIV integrase inhibitor).
Results
HCV RNA was detected utilizing two qualitative strand-specific RT-PCR assays. HCV core antigen and NS3 protein was quantified in the supernatant and cell lysate, respectively. siRNA was utilized to knockdown CCR5 gene expression in hepatocytes. Alternatively, anti-CCR5 antibodies were employed to block the receptor. Supernatant levels of HCV RNA (expressed as fold change) were not reduced in the presence of raltegravir but were reduced 8.55-fold and 12.42-fold with cenicriviroc and maraviroc, respectively. Sofosbuvir resulted in a 16.20-fold change in HCV RNA levels. HCV core and NS3 protein production was also reduced in a dose-dependent manner. Two distinct anti-CCR5 antibodies also resulted in a significant reduction in HCV protein expression, as did siRNA knockdown of CCR5 gene expression.
Conclusions
These data provide evidence that CCR5 modulation could have a significant effect on HCV replication in an in vitro system. Further evaluation of the role of CCR5 inhibition in clinical settings may be warranted.
Klíčová slova:
Hepatitis C virus – Hepatocytes – Chemokines – Small interfering RNAs – Viral replication – Virions – CCR5 coreceptor
Zdroje
1. Michael NL, Nelson JAE, KewalRamani VN, Chang G, O'Brien SJ, Mascola JR, et al. Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta32. J Virol. 1998;72(7):6040–7. 9621067
2. Marmor M, Sheppard HW, Donnell D, Bozeman S, Celum C, Buchbinder S, et al. Homozygous and heterozygous CCR5-Delta32 genotypes are associated with resistance to HIV infection. Journal of acquired immune deficiency syndromes. 2001;27(5):472–81. doi: 10.1097/00126334-200108150-00009 11511825.
3. Kostrikis LG, Huang Y, Moore JP, Wolinsky SM, Zhang L, Guo Y, et al. A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nature medicine. 1998;4(3):350–3. doi: 10.1038/nm0398-350 9500612.
4. Blackard JT, Kemmer N, Sherman K. Extrahepatic replication of HCV: insights into clinical manifestations and biological consequences. Hepatology. 2006;44(1):15–22. doi: 10.1002/hep.21283 16799966
5. Schwabe RF, Bataller R, Brenner DA. Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol. 2003;285(5):G949–58. Epub 2003/06/28. doi: 10.1152/ajpgi.00215.2003 12829440.
6. Nomiyama H, Hieshima K, Nakayama T, Sakaguchi T, Fujisawa R, Tanase S, et al. Human CC chemokine liver-expressed chemokine/CCL16 is a functional ligand for CCR1, CCR2 and CCR5, and constitutively expressed by hepatocytes. Int Immunol. 2001;13(8):1021–9. Epub 2001/07/27. doi: 10.1093/intimm/13.8.1021 11470772.
7. Coenen M, Nattermann J. The role of CCR5 in HCV infection. Eur J Med Res. 2010;15(3):97–101. Epub 2010/05/11. doi: 10.1186/2047-783X-15-3-97 20452893; PubMed Central PMCID: PMC3352223.
8. Wasmuth HE, Werth A, Mueller T, Berg T, Dietrich CG, Geier A, et al. CC chemokine receptor 5 delta32 polymorphism in two independent cohorts of hepatitis C virus infected patients without hemophilia. J Mol Med (Berl). 2004;82(1):64–9. Epub 2003/12/16. doi: 10.1007/s00109-003-0505-0 14673528.
9. Ahlenstiel G, Woitas RP, Iwan A, Nattermann J, Feldmann G, Rockstroh JK, et al. Effects of the CCR5-Delta32 mutation on hepatitis C virus-specific immune responses in patients with haemophilia. Immunol Invest. 2009;38(3–4):284–96. Epub 2009/10/09. 19811439.
10. Wald O, Pappo O, Ari ZB, Azzaria E, Wiess ID, Gafnovitch I, et al. The CCR5 Delta 32 allele is associated with reduced liver inflammation in hepatitis C virus infection. Eur J Immunogenet. 2004;31(6):249–52. doi: 10.1111/j.1365-2370.2004.00482.x WOS:000225151500002. 15548261
11. Rockstroh JK, Plonski F, Bansal M, Fatkenheuer G, Small CB, Asmuth DM, et al. Hepatic safety of maraviroc in patients with HIV-1 and hepatitis C and/or B virus: 144-week results from a randomized, placebo-controlled trial. Antiviral therapy. 2017;22(3):263–9. Epub 2016/12/08. doi: 10.3851/IMP3116 27924779.
12. Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP, Caballeria J, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology. 2017. doi: 10.1002/hep.29477 28833331.
13. Thompson M, Saag M, DeJesus E, Gathe J, Lalezari J, Landay AL, et al. A 48-week randomized phase 2b study evaluating cenicriviroc versus efavirenz in treatment-naive HIV-infected adults with C-C chemokine receptor type 5-tropic virus. Aids. 2016;30(6):869–78. doi: 10.1097/QAD.0000000000000988 26636929; PubMed Central PMCID: PMC4794136.
14. Sherman KE, Abdel-Hameed E, Rouster SD, Shata MTM, Blackard JT, Safaie P, et al. Improvement in Hepatic Fibrosis Biomarkers Associated with Chemokine Receptor Inactivation through Mutation or Therapeutic Blockade. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2018. Epub 2018/09/22. doi: 10.1093/cid/ciy807 30239650.
15. Cai Z, Zhang C, Chang KS, Jiang J, Ahn BC, Wakita T, et al. Robust production of infectious hepatitis C virus (HCV) from stably HCV cDNA-transfected human hepatoma cells. Journal of Virology. 2005;79(22):13963–73. doi: 10.1128/JVI.79.22.13963-13973.2005 16254332.
16. Blackard JT, Kong L, Huber AK, Tomer Y. Hepatitis C virus infection of a thyroid cell line: implications for pathogenesis of hepatitis C virus and thyroiditis. Thyroid. 2013;23(7):863–70. doi: 10.1089/thy.2012.0507 23259732
17. Hiasa Y, Blackard JT, Lin W, Kamegaya Y, Horiike N, Onji M, et al. Cell-based models of sustained, interferon-sensitive hepatitis C virus genotype 1 replication. Journal of Virologic Methods. 2006;132:195–203.
18. Cao YZ, Friedman-Kein AE, Huang YX, Li XL, Mirabile M, Moudgil T, et al. CD4-independent, productive human immunodeficiency virus type 1 infection of hepatoma cell lines in vitro. Journal of Virology. 1990;64(6):2553–9. 2159530
19. Banerjee R, Sperber K, Pizzella T, Mayer L. Inhibition of HIV-1 productive infection in hepatoblastoma HepG2 cells by recombinant tumor necrosis factor-a. Aids. 1992;6(10):1127–31. doi: 10.1097/00002030-199210000-00010 1466843
20. Munshi N, Balasubramanian A, Koziel M, Ganju R, Groopman J. Hepatitis C and human immunodeficiency virus envelope proteins cooperatively induce hepatocytic apoptosis via an innocent bystander mechanism. Journal of Infectious Diseases. 2003;188:1192–204. doi: 10.1086/378643 14551890
21. Balasubramanian A, Ganju R, Groopman J. HCV and HIV envelope proteins collaboratively mediate IL-8 secretion through activation of p38 MAP kinase and SHP2 in hepatocytes. Journal of Biological Chemistry. 2003;278(37):35755–66. doi: 10.1074/jbc.M302889200 12824191
22. Vlahakis S, Villasis-Keever A, Gomez T, Bren G, Paya C. Human immunodeficiency virus-induced apoptosis of human hepatocytes via CXCR4. Journal of Infectious Diseases. 2003;188:1455–60. doi: 10.1086/379738 14624370
23. Iser DM, Warner N, Revill PA, Solomon A, Wightman F, Saleh S, et al. Coinfection of hepatic cell lines with human immunodeficiency virus and hepatitis B virus leads to an increase in intracellular hepatitis B surface antigen. Journal of Virology. 2010;84(12):5860–7. doi: 10.1128/JVI.02594-09 20357083
24. Xiao P, Usami O, Suzuki Y, Ling H, Shimizu N, Hoshino H, et al. Characterization of a CD4-independent clinical HIV-1 that can efficiently infect human hepatocytes through chemokine (C-X-C motif) receptor 4. AIDS. 2008;22(14):1749–57. doi: 10.1097/QAD.0b013e328308937c 18753859
25. Fromentin R, MR T, Tremblay M. Human hepatoma cells transmit surface bound HIV-1 to CD4+ T cells through an ICAM-1/LFA-1-dependent mechanism. Virology. 2010;398:168–75. doi: 10.1016/j.virol.2009.12.008 20034651
26. Kong L, Cardona Maya W, Moreno-Fernandez ME, Ma G SM, Sherman KE, Chougnet C, et al. Low-level HIV infection of hepatocytes. Virology Journal. 2012;9(1):157.
27. Sandmann L, Wilson M, Back D, Wedemeyer H, Manns MP, Steinmann E, et al. Anti-retroviral drugs do not facilitate hepatitis C virus (HCV) infection in vitro. Antiviral research. 2012;96(1):51–8. Epub 2012/07/31. doi: 10.1016/j.antiviral.2012.07.005 22842003.
28. Rockstroh JK, Soriano V, Plonski F, Bansal M, Fatkenheuer G, Small CB, et al. Hepatic safety in subjects with HIV-1 and hepatitis C and/or B virus: a randomized, double-blind study of maraviroc versus placebo in combination with antiretroviral agents. HIV Clin Trials. 2015;16(2):72–80. Epub 2015/04/30. doi: 10.1179/1528433614Z.0000000011 25923596.
29. Sherman KE, Guedj J, Shata MT, Blackard JT, Rouster SD, Castro M, et al. Modulation of HCV replication after combination antiretroviral therapy in HCV/HIV co-infected patients. Science translational medicine. 2014;6(246):246ra98. doi: 10.1126/scitranslmed.3008195 25101888; PubMed Central PMCID: PMC4326686.
30. Saiman Y, Friedman SL. The role of chemokines in acute liver injury. Front Physiol. 2012;3:213. Epub 2012/06/23. doi: 10.3389/fphys.2012.00213 22723782; PubMed Central PMCID: PMC3379724.
31. Li K, Li NL, Wei D, Pfeffer SR, Fan M, Pfeffer LM. Activation of chemokine and inflammatory cytokine response in hepatitis C virus-infected hepatocytes depends on Toll-like receptor 3 sensing of hepatitis C virus double-stranded RNA intermediates. Hepatology. 2012;55(3):666–75. Epub 2011/10/28. doi: 10.1002/hep.24763 22030901; PubMed Central PMCID: PMC3272326.
32. Nishitsuji H, Funami K, Shimizu Y, Ujino S, Sugiyama K, Seya T, et al. Hepatitis C virus infection induces inflammatory cytokines and chemokines mediated by the cross talk between hepatocytes and stellate cells. Journal of virology. 2013;87(14):8169–78. Epub 2013/05/17. doi: 10.1128/JVI.00974-13 23678168; PubMed Central PMCID: PMC3700210.
33. Zhang T, Guo CJ, Li Y, Douglas SD, Qi XX, Song L, et al. Interleukin-1beta induces macrophage inflammatory protein-1beta expression in human hepatocytes. Cell Immunol. 2003;226(1):45–53. Epub 2004/01/30. doi: 10.1016/j.cellimm.2003.10.005 14746807; PubMed Central PMCID: PMC4016814.
34. Hofmann S, Krajewski M, Scherer C, Scholz V, Mordhorst V, Truschow P, et al. Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(9):1041–56. Epub 2018/06/10. doi: 10.1016/j.bbalip.2018.06.002 29885363.
35. Vieyres G, Pietschmann T. HCV Pit Stop at the Lipid Droplet: Refuel Lipids and Put on a Lipoprotein Coat before Exit. Cells. 2019;8(3). Epub 2019/03/16. doi: 10.3390/cells8030233 30871009; PubMed Central PMCID: PMC6468556.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy