Within-subject variability in human retinal nerve fiber bundle width
Autoři:
William H. Swanson aff001; Brett J. King aff001; Stephen A. Burns aff001
Působiště autorů:
School of Optometry, Indiana University, Bloomington, Indiana, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223350
Souhrn
With the growing availability of high-resolution imaging there has been increased interest in developing new metrics for integrity of the retinal nerve fiber layer. In particular, it has been suggested that measurement of width of retinal nerve fiber bundles (RNFBs) may be useful in glaucoma, due to low between-subject variability in mean RNFB width. However, there have also been reports of substantial within-subject variability in the width of individual RNFBs. To assess within-subject variability as a potential source of selection bias in measurements of RNFB width, we used an adaptive optics scanning laser ophthalmoscope (AOSLO) to measure widths of individual RNFBs in one eye each of 11 young adults in good ocular health. In a pilot study we analyzed a large AOSLO image of RNFL in one participant then, based on those findings, in the main study we used AOSLO to image a smaller region in 10 additional healthy young adults. The pilot study of one eye found RNFB widths ranging from 10 μm to 44 μm. This suggested that biological variability was too high for measuring small changes arising from disease processes. This was confirmed in measurements of 10 eyes in the main study, RNFB widths ranged from 9 μm to 55 μm and every eye had large within-subject variability (exceeding 19 μm in all eyes) in RNFB width for nearby bundles. The within-subject variability in RNFB width, as well as variation in the width of single RNFBs over relatively short distances (<300 um) depending on the precise location of measurement, suggests that bundle width measurements would be highly susceptible to selection bias and therefore of limited clinical use.
Klíčová slova:
Eye diseases – Eyes – Fovea centralis – Glaucoma – Nerve fibers – Pilot studies – Retina – Young adults
Zdroje
1. Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014;98 Suppl 2:ii15–9.
2. Chauhan BC, Sharpe GP, Hutchison DM. Imaging of the temporal raphe with optical coherence tomography. Ophthalmology. 2014;121(11):2287–8. doi: 10.1016/j.ophtha.2014.06.023 25156139
3. Bedggood P, Tanabe F, McKendrick AM, Turpin A. Automatic identification of the temporal retinal nerve fiber raphe from macular cube data. Biomed Opt Express. 2016;7(10):4043–53. doi: 10.1364/BOE.7.004043 27867714
4. Kocaoglu OP, Cense B, Jonnal RS, Wang Q, Lee S, Gao W, et al. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics. Vision Res. 2011;51(16):1835–44. doi: 10.1016/j.visres.2011.06.013 21722662
5. Huang G, Qi X, Chui TY, Zhong Z, Burns SA. A clinical planning module for adaptive optics SLO imaging. Optom Vis Sci. 2012;89(5):593–601. doi: 10.1097/OPX.0b013e318253e081 22488269
6. Takayama K, Ooto S, Hangai M, Arakawa N, Oshima S, Shibata N, et al. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy. PLoS One. 2012;7(3):e33158. doi: 10.1371/journal.pone.0033158 22427978
7. Chen MF, Chui TY, Alhadeff P, Rosen RB, Ritch R, Dubra A, et al. Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma. Invest Ophthalmol Vis Sci. 2015;56(1):674–81. doi: 10.1167/iovs.14-15936 25574048
8. Hood DC, Fortune B, Mavrommatis MA, Reynaud J, Ramachandran R, Ritch R, et al. Details of Glaucomatous Damage Are Better Seen on OCT En Face Images Than on OCT Retinal Nerve Fiber Layer Thickness Maps. Invest Ophthalmol Vis Sci. 2015;56(11):6208–16. doi: 10.1167/iovs.15-17259 26426403
9. Hood DC, De Cuir N, Blumberg DM, Liebmann JM, Jarukasetphon R, Ritch R, et al. A Single Wide-Field OCT Protocol Can Provide Compelling Information for the Diagnosis of Early Glaucoma. Transl Vis Sci Technol. 2016;5(6):4. doi: 10.1167/tvst.5.6.4 27847691
10. Huang G, Luo T, Gast TJ, Burns SA, Malinovsky VE, Swanson WH. Imaging Glaucomatous Damage Across the Temporal Raphe. Invest Ophthalmol Vis Sci. 2015;56(6):3496–504. doi: 10.1167/iovs.15-16730 26047040
11. Thepass G, Lemij HG, Vermeer KA. Attenuation Coefficients From SD-OCT Data: Structural Information Beyond Morphology on RNFL Integrity in Glaucoma. J Glaucoma. 2017;26(11):1001–9. doi: 10.1097/IJG.0000000000000764 28858153
12. Ashimatey BS, King BJ, Malinovsky VE, Swanson WH. Novel Technique for Quantifying Retinal Nerve Fiber Bundle Abnormality in the Temporal Raphe. Optom Vis Sci. 2018;95(4):309–17. doi: 10.1097/OPX.0000000000001202 29561499
13. Ashimatey BS, King BJ, Burns SA, Swanson WH. Evaluating glaucomatous abnormality in peripapillary optical coherence tomography enface visualisation of the retinal nerve fibre layer reflectance. Ophthalmic Physiol Opt. 2018;38(4):376–88. doi: 10.1111/opo.12449 29602236
14. Alluwimi MS, Swanson WH, Malinovsky VE, King BJ. Customizing Perimetric Locations Based on En Face Images of Retinal Nerve Fiber Bundles With Glaucomatous Damage. Transl Vis Sci Technol. 2018;7(2):5. doi: 10.1167/tvst.7.2.5 29576929
15. Wu Z, Weng DSD, Rajshekhar R, Ritch R, Hood DC. Effectiveness of a Qualitative Approach Toward Evaluating OCT Imaging for Detecting Glaucomatous Damage. Transl Vis Sci Technol. 2018;7(4):7. doi: 10.1167/tvst.7.4.7 30034951
16. Hood DC, Anderson SC, Wall M, Raza AS, Kardon RH. A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements. Invest Ophthalmol Vis Sci. 2009;50(9):4254–66. doi: 10.1167/iovs.08-2697 19443710
17. Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007;26(6):688–710. doi: 10.1016/j.preteyeres.2007.08.001 17889587
18. Alluwimi MS, Swanson WH, Malinovsky VE. Between-subject variability in asymmetry analysis of macular thickness. Optom Vis Sci. 2014;91(5):484–90. doi: 10.1097/OPX.0000000000000249 24727826
19. Ashimatey BS, Swanson WH. Between-Subject Variability in Healthy Eyes as a Primary Source of Structural-Functional Discordance in Patients With Glaucoma. Invest Ophthalmol Vis Sci. 2016;57(2):502–7. doi: 10.1167/iovs.15-18633 26873511
20. Swanson WH, King BJ, Horner DG. Using Small Samples to Evaluate Normative Reference Ranges for Retinal Imaging Measures. Optom Vis Sci. 2019;96:146–55. doi: 10.1097/OPX.0000000000001353 30801505
21. Malik R, Swanson WH, Garway-Heath DF. 'Structure-function relationship' in glaucoma: past thinking and current concepts. Clin Exp Ophthalmol. 2012;40(4):369–80. doi: 10.1111/j.1442-9071.2012.02770.x 22339936
22. Swanson WH, Malinovsky VE, Dul MW, Malik R, Torbit JK, Sutton BM, et al. Contrast sensitivity perimetry and clinical measures of glaucomatous damage. Optom Vis Sci. 2014;91(11):1302–11. doi: 10.1097/OPX.0000000000000395 25259758
23. Takayama K, Ooto S, Hangai M, Ueda-Arakawa N, Yoshida S, Akagi T, et al. High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy. Am J Ophthalmol. 2013;155(5):870–81. doi: 10.1016/j.ajo.2012.11.016 23352341
24. Luo T, Gast TJ, Vermeer TJ, Burns SA. Retinal Vascular Branching in Healthy and Diabetic Subjects. Invest Ophthalmol Vis Sci. 2017;58(5):2685–94. doi: 10.1167/iovs.17-21653 28525557
25. Zou W, Qi X, Burns SA. Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm. Biomed Opt Express. 2011;2(7):1986–2004. doi: 10.1364/BOE.2.001986 21750774
26. Vrabec F. The temporal raphe of the human retina. Am J Ophthalmol. 1966;62(5):926–38. doi: 10.1016/0002-9394(66)91920-9 4162879
27. Bennett AG, Rudnicka AR, Edgar DF. Improvements on Littmann's method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol. 1994;232(6):361–7. doi: 10.1007/bf00175988 8082844
28. Zhang X, Mitchell C, Wen R, Laties AM. Nerve fiber layer splaying at vascular crossings. Invest Ophthalmol Vis Sci. 2002;43(7):2063–6. 12091397
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy