Chemotherapy-induced cellular senescence suppresses progression of Notch-driven T-ALL
Autoři:
Ying Zhang aff001; Justin Gundelach aff001; Lonnie D. Lindquist aff001; Darren J. Baker aff002; Jan van Deursen aff002; Richard J. Bram aff003
Působiště autorů:
Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States of America
aff001; Department of Pediatric and Adolescent Medicine, and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
aff002; Department of Immunology, and Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224172
Souhrn
T cell acute lymphoblastic leukemia (T-ALL) is a serious hematologic malignancy that occurs in children and young adults. Current therapies include intensive chemotherapy and ionizing radiation that preferentially kill malignant cells. Unfortunately, they are frequently accompanied by unintended negative impacts, including the induction of cellular senescence and long-term toxicities in normal host tissues. Whether these senescent cells resulting from therapy increase the susceptibility to relapse or secondary cancers is unknown. Using transgenic and pharmacological approaches to eliminate doxorubicin-induced senescent cells in a Notch-driven T-ALL relapse mouse model, we find that these cells inhibit tumor recurrence, suggesting that senescence in response to treatment suppresses tumorigenesis. This finding, together with extensive evidence from others demonstrating that age-associated health problems develop dramatically earlier among childhood cancer survivors compared to age-matched counterparts, suggests a relationship between therapy-induced senescence and tumorigenesis. Although cancer risk is increased through accelerated premature-aging in the long run, therapy-induced senescence appears to protect survivors from recurrence, at least in the short run.
Klíčová slova:
Aging – Aging and cancer – Cancer treatment – Cell staining – Drug therapy – Leukemias – Mouse models – Senescence
Zdroje
1. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71. doi: 10.1126/science.1102160 15472075.
2. Aster JC, Pear WS, Blacklow SC. Notch signaling in leukemia. Annu Rev Pathol. 2008;3:587–613. doi: 10.1146/annurev.pathmechdis.3.121806.154300 18039126; PubMed Central PMCID: PMC5934586.
3. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678–89. doi: 10.1038/nrm2009 16921404.
4. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66(4):649–61. doi: 10.1016/0092-8674(91)90111-b 1831692.
5. Khwaja SS, Liu H, Tong C, Jin F, Pear WS, van Deursen J, et al. HIV-1 Rev-binding protein accelerates cellular uptake of iron to drive Notch-induced T cell leukemogenesis in mice. J Clin Invest. 2010;120(7):2537–48. doi: 10.1172/JCI41277 20516639; PubMed Central PMCID: PMC2898592.
6. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78–83. doi: 10.1038/nm.4010 26657143; PubMed Central PMCID: PMC4762215.
7. Iglesias-Bartolome R, Patel V, Cotrim A, Leelahavanichkul K, Molinolo AA, Mitchell JB, et al. mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis. Cell Stem Cell. 2012;11(3):401–14. doi: 10.1016/j.stem.2012.06.007 22958932; PubMed Central PMCID: PMC3477550.
8. Dorr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Dabritz JH, et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature. 2013;501(7467):421–5. doi: 10.1038/nature12437 23945590.
9. Ewald JA, Desotelle JA, Wilding G, Jarrard DF. Therapy-induced senescence in cancer. J Natl Cancer Inst. 2010;102(20):1536–46. doi: 10.1093/jnci/djq364 20858887; PubMed Central PMCID: PMC2957429.
10. Nardella C, Clohessy JG, Alimonti A, Pandolfi PP. Pro-senescence therapy for cancer treatment. Nat Rev Cancer. 2011;11(7):503–11. doi: 10.1038/nrc3057 21701512.
11. Gonzalez LC, Ghadaouia S, Martinez A, Rodier F. Premature aging/senescence in cancer cells facing therapy: good or bad? Biogerontology. 2016;17(1):71–87. doi: 10.1007/s10522-015-9593-9 26330289.
12. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. doi: 10.1146/annurev-pathol-121808-102144 20078217; PubMed Central PMCID: PMC4166495.
13. Llanos S, Serrano M. Senescence and Cancer: In the Name of Immunosuppression. Cancer Cell. 2016;30(4):507–8. doi: 10.1016/j.ccell.2016.09.015 27728798.
14. Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, et al. Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell. 2013;152(1–2):340–51. doi: 10.1016/j.cell.2012.12.010 23332765; PubMed Central PMCID: PMC3718011.
15. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–6. doi: 10.1038/nature10600 22048312; PubMed Central PMCID: PMC3468323.
16. Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC, et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol. 2003;23(2):655–64. doi: 10.1128/MCB.23.2.655-664.2003 12509463; PubMed Central PMCID: PMC151540.
17. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996;183(5):2283–91. doi: 10.1084/jem.183.5.2283 8642337; PubMed Central PMCID: PMC2192581.
18. Kuster T, Zumkehr B, Hermann C, Theurillat R, Thormann W, Gottstein B, et al. Voluntary ingestion of antiparasitic drugs emulsified in honey represents an alternative to gavage in mice. J Am Assoc Lab Anim Sci. 2012;51(2):219–23. 22776122; PubMed Central PMCID: PMC3314525.
19. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9. doi: 10.1038/nature16932 26840489; PubMed Central PMCID: PMC4845101.
20. Tchkonia T, Kirkland JL. Aging, Cell Senescence, and Chronic Disease: Emerging Therapeutic Strategies. JAMA. 2018;320(13):1319–20. doi: 10.1001/jama.2018.12440 30242336.
21. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. doi: 10.1038/s41591-018-0092-9 29988130; PubMed Central PMCID: PMC6082705.
22. Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. doi: 10.1016/j.ebiom.2018.09.015 30279143; PubMed Central PMCID: PMC6197652.
23. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. doi: 10.1111/acel.12344 25754370; PubMed Central PMCID: PMC4531078.
24. Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190. doi: 10.1038/ncomms11190 27048913; PubMed Central PMCID: PMC4823827.
25. Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016;354(6311):472–7. doi: 10.1126/science.aaf6659 27789842; PubMed Central PMCID: PMC5112585.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy