A further study on Franciscobasis Machado & Bedê, 2016 (Odonata: Coenagrionidae), a newly described genus from Minas Gerais, Brazil
Autoři:
Diogo Silva Vilela aff001; Ricardo Koroiva aff003; Adolfo Cordero-Rivera aff004; Rhainer Guillermo-Ferreira aff002
Působiště autorů:
Graduate Program in Entomology, Department of Biology, University of São Paulo (USP), Ribeirão Preto, Brazil
aff001; Laboratory of Ecological Studies on Ethology and Evolution (LESTES), Department of Hydrobiology, Federal University of São Carlos, São Carlos, Brazil
aff002; Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
aff003; ECOEVO Lab, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Pontevedra, Spain
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223241
Souhrn
The genus Franciscobasis Machado & Bedê, 2016 is endemic to the Serra da Canastra National Park in Minas Gerais state, Brazil. Two species of Franciscobasis were described simultaneously with the genus description: F. franciscoi and F. sonia, the latter described only from females. Through morphological and molecular analysis, we investigated if F. sonia may represent the young female of F. franciscoi. Resulting data did not present adequate differences between females to characterize them as different species. Therefore, we suggest that F. sonia is a junior synonym of F. franciscoi, and the female of F. franciscoi goes through a complex ontogenetic color change.
Klíčová slova:
Brazil – Gastrointestinal tract – Phylogenetic analysis – Scanning electron microscopy – Sequence alignment – Species delimitation – Taxonomy – Chorion
Zdroje
1. Machado ABM, Bedê LC. Two new genera and nine new species of damselflies from a localized area in Minas Gerais, Brazil (Odonata: Zygoptera). Int J Odonatol. 2015;18: 269–296. doi: 10.1080/13887890.2015.1072113
2. Dayrat B. Towards integrative taxonomy. Biol J Linn Soc. 2005;85: 407–415. doi: 10.1111/j.1095-8312.2005.00503.x
3. Padial JM, Miralles A, De la Riva I, Vences M. The integrative future of taxonomy. Front Zool. 2010;7: 16. doi: 10.1186/1742-9994-7-16 20500846
4. Will K, Mishler B, Wheeler Q. The Perils of DNA Barcoding and the Need for Integrative Taxonomy. Syst Biol. 2005;54: 844–851. doi: 10.1080/10635150500354878 16243769
5. Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH. Integrative Taxonomy: A Multisource Approach to Exploring Biodiversity. Annu Rev Entomol. 2010;55: 421–438. doi: 10.1146/annurev-ento-112408-085432 19737081
6. Cordero A. The inheritance of female polymorphism in the damselfly Ischnura graellsii (Rambur) (Odonata: Coenagrionidae). Heredity (Edinb). 1990;64: 341–346. doi: 10.1038/hdy.1990.42
7. Andrés JA, Cordero A. The inheritance of female colour morphs in the damselfly Ceriagrion tenellum (Odonata, Coenagrionidae). Heredity (Edinb). 1999;82: 328–335. doi: 10.1038/sj.hdy.6884930 10336708
8. Sanmartín-Villar I, Zhang HM, Cordero-Rivera A. Colour polymorphism and ontogenetic colour changes in Ischnura rufostigma (Odonata: Coenagrionidae). Odonatologica. 2016;45: 77–86.
9. Vilela DS, Samuel Ricioli L, Del-Claro K, Guillermo-Ferreira R. Female color polymorphism of Ischnura capreolus Hagen, 1861 (Odonata: Coenagrionidae) with notes on behavior and ontogenetic color changes. Int J Odonatol. 2017;20: 191–200. doi: 10.1080/13887890.2017.1373152
10. Sánchez-Guillén RA, Cordero-Rivera A, Rivas-Torres A, Wellenreuther M, Bybee S, Hansson B, et al. The evolutionary history of colour polymorphism in Ischnura damselflies. J Evol Biol. doi: 10.1111/jeb.13289 29746704
11. Fincke OM. On the difficulty of detecting density?dependent selection on polymorphic females of the damselflyIschnura graellsii: Failure to reject the null. Evol Ecol. 1994;8: 328–329. doi: 10.1007/BF01238282
12. Fincke OM, Jödicke R, Paulson DR, Schultz TD. The evolution and frequency of female color morphs in Holarctic Odonata: why are male-like females typically the minority? Int J Odonatol. 2005;8: 183–212. doi: 10.1080/13887890.2005.9748252
13. Cordero A, Andrés JA. Colour polymorphism in odonates: females that mimic males. J Br Dragonfly Soc. 1996;12: 50–60.
14. Sanmartín-Villar I, Cordero-Rivera A. The inheritance of female colour polymorphism in Ischnura genei (Zygoptera: Coenagrionidae), with observations on melanism under laboratory conditions. PeerJ. 2016;4: e2380. doi: 10.7717/peerj.2380 27635344
15. Robinson JV, Jordan WH. Ontogenetic color change in Ischnura kellicotti Williamson females (Zygoptera: Coenagrionidae). Odonatologica. 1996;25: 83–85.
16. Garrison RW, von Ellenrieder N, Louton JA. Damselfly Genera of the New World: An Illustrated and Annotated Key to the Zygoptera. Baltimore, USA: Johns Hopkins University Press; 2010.
17. Waage JK. Adult sex ratios and female reproductive potential in Calopteryx (Zygoptera: Calopterygidae). Odonatologica. 1980;9: 217–230.
18. Higashi T, Watanabe M. Fecundity and oviposition in three skimmers, Orthetrum japonicum, O. albistylum and O. triangulare (Odonata: Libellulidae). Ecol Res. 1993;8: 103–105. doi: 10.1007/BF02348613
19. Watanabe M, Adachi Y. Number and Size of Eggs in the Three Emerald Damselflies, Lestes sponsa, L. temporalis and L. japonicus. Zoolog Sci. 1987;4: 575–578.
20. CCDB—Primer sets, sequences and PCR programs for animals [Internet]. 2011 [cited 24 Mar 2017]. Available: http://www.dnabarcodes2011.org/conference/preconference/CCDB-PrimersetssequencesandPCRprogramsforanimals.xls
21. Dijkstra KDB, Kalkman VJ, Dow RA, Stokvis FR, Van Tol J. Redefining the damselfly families: A comprehensive molecular phylogeny of Zygoptera (Odonata). Syst Entomol. 2014;39: 68–96. doi: 10.1111/syen.12035
22. Koroiva R, Pepinelli M, Rodrigues ME, Roque FDO, Lorenz-Lemke AP, Kvist S. DNA barcoding of odonates from the Upper Plata basin: Database creation and genetic diversity estimation. PLoS One. 2017;12. doi: 10.1371/journal.pone.0182283 28763495
23. Kim MJ, Jung KS, Park NS, Wan X, Kim K-G, Jun J, et al. Molecular phylogeny of the higher taxa of Odonata (Insecta) inferred from COI, 16S rRNA, 28S rRNA, and EF1-α sequences. Entomol Res. 2014;44: 65–79. doi: 10.1111/1748-5967.12051
24. Telfer A, Young M, Quinn J, Perez K, Sobel C, Sones J, et al. Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve. Biodivers Data J. 2015;3: e6313. doi: 10.3897/BDJ.3.e6313 26379469
25. Iserbyt A, Bots J, Van Gossum H, Jordaens K. Did historical events shape current geographic variation in morph frequencies of a polymorphic damselfly? J Zool. 2010;282: 256–265. doi: 10.1111/j.1469-7998.2010.00735.x
26. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28: 1647–1649. doi: 10.1093/bioinformatics/bts199 22543367
27. von Ellenrieder N. Revalidation of Argentagrion and redefinition of Homeoura, with the description of H. obrieni n. sp. (Odonata: Coenagrionidae). Rev la Soc Entomológica Argentina. 2008;67: 81–106.
28. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32: 1792–1797. doi: 10.1093/nar/gkh340 15034147
29. Srivathsan A, Meier R. On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics. 2012;28: 190–194. doi: 10.1111/j.1096-0031.2011.00370.x
30. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33: 1870–1874. doi: 10.1093/molbev/msw054 27004904
31. Koroiva R, Kvist S. Estimating the barcoding gap in a global dataset of cox1 sequences for Odonata: close, but no cigar. Mitochondrial DNA Part A DNA Mapping, Seq Anal. 2018;Jul 28: 765–771. doi: 10.1080/24701394.2017.1357709 28752773
32. Koroiva R, de Souza MS, Roque F de O, Pepinelli M. DNA Barcodes for Forensically Important Fly Species in Brazil. J Med Entomol. 2018;55: 1055–1061. doi: 10.1093/jme/tjy045 29635368
33. Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol. 2012;21: 1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x 21883587
34. Murphy RW, Crawford AJ, Bauer AM, Che J, Donnellan SC, Fritz U, et al. Cold Code: The global initiative to DNA barcode amphibians and nonavian reptiles. Mol Ecol Resour. 2013;13: 161–167. doi: 10.1111/1755-0998.12050
35. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30: 1312–1313. doi: 10.1093/bioinformatics/btu033 24451623
36. Paulson DR. A new species of dragonfly, Gomphus (Gomphurus) lynnae spec. nov., from the Yakima River, Washington, with notes on pruinosity in Gomphidae (Anisoptera). Odonatologica. 1983;12: 59–70.
37. Corbet PS. Dragonflies: behavior and ecology of Odonata. Ithaca: Comstock Publ. Assoc; 1999.
38. Lencioni FAA. Damselflies of Brazil: An Illustrated Identification Guide, Volume 2: Coenagrionidae. São Paulo, Brazil: All Print Editora; 2006.
39. von Ellenrieder N, Garrison RW. Oreiallagma gen. nov. with a redefinition of Cyanallagma Kennedy 1920 and Mesamphiagrion Kennedy 1920, and the description of M. dunklei sp. nov. and M. ecuatoriale sp. nov. from Ecuador (Odonata: Coenagrionidae). Zootaxa. 2008;1805: 1–51. doi: 10.11646/zootaxa.1805.1.1
40. Westfall MJ, May ML. Damselflies of North America. Gainesville, FL: Scientific Publishers; 2006.
41. Johnson C. Ovarian development and age recognition in the damselfly, Argia moesta (Hagen, 1961) (Zygoptera: Coenagrionidae). Odonatologica. 1973;2: 69–81.
42. Orr AG, Dow RA. Description of the final stadium larvae of Onychargia atrocyana Selys, 1865 from Sarawak, identified using DNA barcoding (Odonata: Zygoptera: Platycnemididae), with an overview of larval characters in the Platycnemididae. Zootaxa. 2015;4040: 384–392. doi: 10.11646/zootaxa.4040.3.9 26624673
43. Orr AG, Dow RA. Description of two final stadium platystictid larvae from Borneo, including that of Drepanosticta attala Lieftinck, identified using DNA barcoding (Odonata: Zygoptera: Platystictidae). Zootaxa. 2015;3985: 565. doi: 10.11646/zootaxa.3985.4.5 26250164
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy