Trace amine-associated receptor gene polymorphism increases drug craving in individuals with methamphetamine dependence
Autoři:
Jennifer M. Loftis aff001; Michael Lasarev aff003; Xiao Shi aff001; Jodi Lapidus aff003; Aaron Janowsky aff001; William F. Hoffman aff001; Marilyn Huckans aff001
Působiště autorů:
Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
aff001; Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
aff002; Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
aff003; Oregon Health & Science University and Portland State University School of Public Health, Portland, OR, United States of America
aff004; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States of America
aff005; Mental Health and Clinical Neurosciences Division, VA Portland Health Care System, Portland, OR, United States of America
aff006
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0220270
Souhrn
Background
Methamphetamine (MA) is a potent agonist at the trace amine-associated receptor 1 (TAAR1). This study evaluated a common variant (CV) in the human TAAR1 gene, synonymous single nucleotide polymorphism (SNP) V288V, to determine the involvement of TAAR1 in MA dependence.
Methods
Participants (n = 106) with active MA dependence (MA-ACT), in remission from MA dependence (MA-REM), with active polysubstance dependence, in remission from polysubstance dependence, and with no history of substance dependence completed neuropsychiatric symptom questionnaires and provided blood samples. In vitro expression and function of CV and wild type TAAR1 receptors were also measured.
Results
The V288V polymorphism demonstrated a 40% increase in TAAR1 protein expression in cell culture, but message sequence and protein function were unchanged, suggesting an increase in translation efficiency. Principal components analysis resolved neuropsychiatric symptoms into four components, PC1 (depression, anxiety, memory, and fatigue), PC2 (pain), PC3 (drug and alcohol craving), and PC4 (sleep disturbances). Analyses of study group and TAAR1 genotype revealed a significant interaction for PC3 (craving response) (p = 0.003). The control group showed no difference in PC3 associated with TAAR1, while adjusted mean craving for the MA-ACT and MA-REM groups, among those with at least one copy of V288V, was estimated to be, respectively, 1.55 (p = 0.036) and 1.77 (p = 0.071) times the adjusted mean craving for those without the TAAR1 SNP.
Conclusions
Neuroadaptation to chronic MA use may be altered by TAAR1 genotype and result in increased dopamine signaling and craving in individuals with the V288V genotype.
Klíčová slova:
Addiction – Alcohol consumption – Alcoholism – Caffeine – Molecular genetics – Neuropsychological testing – Sleep – Drug addiction
Zdroje
1. Robles F. Meth, Cheaper And Deadlier, Is Surging Back. New York Times. 2018 February 13.
2. Courtney KE, Ray LA. Methamphetamine: an update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend. 2014;143:11–21. doi: 10.1016/j.drugalcdep.2014.08.003 25176528; PubMed Central PMCID: PMC4164186.
3. Panenka WJ, Procyshyn RM, Lecomte T, MacEwan GW, Flynn SW, Honer WG, et al. Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend. 2013;129(3):167–79. doi: 10.1016/j.drugalcdep.2012.11.016 23273775.
4. Hedegaard H, Bastian BA, Trinidad JP, Spencer M, Warner M. Drugs Most Frequently Involved in Drug Overdose Deaths: United States, 2011–2016. Natl Vital Stat Rep. 2018;67(9):1–14. 30707673.
5. Agrawal A, Edenberg HJ, Gelernter J. Meta-Analyses of Genome-Wide Association Data Hold New Promise for Addiction Genetics. J Stud Alcohol Drugs. 2016;77(5):676–80. doi: 10.15288/jsad.2016.77.676 27588522; PubMed Central PMCID: PMC5015465.
6. Schwantes-An TH, Zhang J, Chen LS, Hartz SM, Culverhouse RC, Chen X, et al. Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts. Behav Genet. 2016;46(2):151–69. doi: 10.1007/s10519-015-9737-3 26392368; PubMed Central PMCID: PMC4752855.
7. Cabana-Dominguez J, Roncero C, Pineda-Cirera L, Palma-Alvarez RF, Ros-Cucurull E, Grau-Lopez L, et al. Association of the PLCB1 gene with drug dependence. Sci Rep. 2017;7(1):10110. doi: 10.1038/s41598-017-10207-2 28860459; PubMed Central PMCID: PMC5579249.
8. Egervari G, Jutras-Aswad D, Landry J, Miller ML, Anderson SA, Michaelides M, et al. A Functional 3'UTR Polymorphism (rs2235749) of Prodynorphin Alters microRNA-365 Binding in Ventral Striatonigral Neurons to Influence Novelty Seeking and Positive Reward Traits. Neuropsychopharmacology. 2016;41(10):2512–20. doi: 10.1038/npp.2016.53 27074815; PubMed Central PMCID: PMC4987849.
9. Kreek MJ, Levran O, Reed B, Schlussman SD, Zhou Y, Butelman ER. Opiate addiction and cocaine addiction: underlying molecular neurobiology and genetics. J Clin Invest. 2012;122(10):3387–93. doi: 10.1172/JCI60390 23023708; PubMed Central PMCID: PMC3534165.
10. Huckans M, Wilhelm CJ, Phillips TJ, Huang ET, Hudson R, Loftis JM. Parallel Effects of Methamphetamine on Anxiety and CCL3 in Humans and a Genetic Mouse Model of High Methamphetamine Intake. Neuropsychobiology. 2017;75(4):169–77. doi: 10.1159/000485129 29402784; PubMed Central PMCID: PMC5911417.
11. Shabani S, Houlton SK, Hellmuth L, Mojica E, Mootz JR, Zhu Z, et al. A Mouse Model for Binge-Level Methamphetamine Use. Front Neurosci. 2016;10:493. doi: 10.3389/fnins.2016.00493 27853417; PubMed Central PMCID: PMC5090006.
12. Liu JF, Li JX. TAAR1 in Addiction: Looking Beyond the Tip of the Iceberg. Front Pharmacol. 2018;9:279. doi: 10.3389/fphar.2018.00279 29636691; PubMed Central PMCID: PMC5881156.
13. Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther. 2017;180:161–80. doi: 10.1016/j.pharmthera.2017.07.002 28723415.
14. Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME. In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1. J Pharmacol Exp Ther. 2016;357(1):134–44. doi: 10.1124/jpet.115.229765 26791601.
15. Shi X, Walter NA, Harkness JH, Neve KA, Williams RW, Lu L, et al. Genetic Polymorphisms Affect Mouse and Human Trace Amine-Associated Receptor 1 Function. PLoS One. 2016;11(3):e0152581. doi: 10.1371/journal.pone.0152581 27031617; PubMed Central PMCID: PMC4816557.
16. Harkness JH, Shi X, Janowsky A, Phillips TJ. Trace Amine-Associated Receptor 1 Regulation of Methamphetamine Intake and Related Traits. Neuropsychopharmacology. 2015;40(9):2175–84. doi: 10.1038/npp.2015.61 25740289; PubMed Central PMCID: PMC4613607.
17. John J, Kukshal P, Bhatia T, Chowdari KV, Nimgaonkar VL, Deshpande SN, et al. Possible role of rare variants in Trace amine associated receptor 1 in schizophrenia. Schizophr Res. 2017;189:190–5. doi: 10.1016/j.schres.2017.02.020 28242106; PubMed Central PMCID: PMC5569002.
18. Smith SB, Maixner DW, Fillingim RB, Slade G, Gracely RH, Ambrose K, et al. Large candidate gene association study reveals genetic risk factors and therapeutic targets for fibromyalgia. Arthritis Rheum. 2012;64(2):584–93. doi: 10.1002/art.33338 21905019; PubMed Central PMCID: PMC3237946.
19. D'Andrea G, D'Amico D, Bussone G, Bolner A, Aguggia M, Saracco MG, et al. The role of tyrosine metabolism in the pathogenesis of chronic migraine. Cephalalgia. 2013;33(11):932–7. doi: 10.1177/0333102413480755 23493762.
20. Ferragud A, Howell AD, Moore CF, Ta TL, Hoener MC, Sabino V, et al. The Trace Amine-Associated Receptor 1 Agonist RO5256390 Blocks Compulsive, Binge-like Eating in Rats. Neuropsychopharmacology. 2017;42(7):1458–70. doi: 10.1038/npp.2016.233 27711047; PubMed Central PMCID: PMC5436108.
21. Liu JF, Seaman R Jr., Siemian JN, Bhimani R, Johnson B, Zhang Y, et al. Role of trace amine-associated receptor 1 in nicotine's behavioral and neurochemical effects. Neuropsychopharmacology. 2018. doi: 10.1038/s41386-018-0017-9 29472642.
22. Lynch LJ, Sullivan KA, Vallender EJ, Rowlett JK, Platt DM, Miller GM. Trace amine associated receptor 1 modulates behavioral effects of ethanol. Subst Abuse. 2013;7:117–26. doi: 10.4137/SART.S12110 23861588; PubMed Central PMCID: PMC3682756.
23. Sukhanov I, Dorofeikova M, Dolgorukova A, Dorotenko A, Gainetdinov RR. Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine. Front Pharmacol. 2018;9:329. doi: 10.3389/fphar.2018.00329 29681856; PubMed Central PMCID: PMC5898227.
24. APA. Diagnostic and statistical manual of mental disorders. 4th ed., Text Revision ed. Washington, DC2000.
25. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59 Suppl 20:22–33;quiz 4–57. 9881538.
26. NIAAA. What's “Low-Risk" Drinking? 2007 [cited 2017 October 6]. Available from: http://rethinkingdrinking.niaaa.nih.gov/IsYourDrinkingPatternRisky/WhatsLowRiskDrinking.asp.
27. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606–13. doi: 10.1046/j.1525-1497.2001.016009606.x 11556941; PubMed Central PMCID: PMC1495268.
28. Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092–7. doi: 10.1001/archinte.166.10.1092 16717171.
29. Smith G, Della Sala S, Logie RH, Maylor EA. Prospective and retrospective memory in normal ageing and dementia: a questionnaire study. Memory. 2000;8(5):311–21. doi: 10.1080/09658210050117735 11045239.
30. Lee JW, Brown ES, Perantie DC, Bobadilla L. A comparison of single-item Visual Analog Scales with a multiitem Likert-type scale for assessment of cocaine craving in persons with bipolar disorder. Addictive Disorders & Their Treatment. 2002;1(4):140–2. doi: 10.1097/00132576-200211000-00005
31. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–3. doi: 10.1001/archneur.1989.00520460115022 2803071.
32. Cleeland CS, Ryan KM. Pain assessment: global use of the Brief Pain Inventory. Ann Acad Med Singapore. 1994;23(2):129–38. 8080219.
33. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. doi: 10.1016/0165-1781(89)90047-4 2748771.
34. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91. doi: 10.1038/nature19057 27535533; PubMed Central PMCID: PMC5018207.
35. Bruun GH, Doktor TK, Andresen BS. A synonymous polymorphic variation in ACADM exon 11 affects splicing efficiency and may affect fatty acid oxidation. Mol Genet Metab. 2013;110(1–2):122–8. doi: 10.1016/j.ymgme.2013.06.005 23810226.
36. Waldman YY, Tuller T, Keinan A, Ruppin E. Selection for translation efficiency on synonymous polymorphisms in recent human evolution. Genome Biol Evol. 2011;3:749–61. doi: 10.1093/gbe/evr076 21803767; PubMed Central PMCID: PMC3163469.
37. Achat-Mendes C, Lynch LJ, Sullivan KA, Vallender EJ, Miller GM. Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amine-associated receptor 1. Pharmacol Biochem Behav. 2012;101(2):201–7. doi: 10.1016/j.pbb.2011.10.025 22079347; PubMed Central PMCID: PMC3288391.
38. Reed C, Baba H, Zhu Z, Erk J, Mootz JR, Varra NM, et al. A Spontaneous Mutation in Taar1 Impacts Methamphetamine-Related Traits Exclusively in DBA/2 Mice from a Single Vendor. Front Pharmacol. 2017;8:993. doi: 10.3389/fphar.2017.00993 29403379; PubMed Central PMCID: PMC5786530.
39. Revel FG, Meyer CA, Bradaia A, Jeanneau K, Calcagno E, Andre CB, et al. Brain-specific overexpression of trace amine-associated receptor 1 alters monoaminergic neurotransmission and decreases sensitivity to amphetamine. Neuropsychopharmacology. 2012;37(12):2580–92. doi: 10.1038/npp.2012.109 22763617; PubMed Central PMCID: PMC3473323.
40. Leo D, Mus L, Espinoza S, Hoener MC, Sotnikova TD, Gainetdinov RR. Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: role of D2 dopamine autoreceptors. Neuropharmacology. 2014;81:283–91. doi: 10.1016/j.neuropharm.2014.02.007 24565640.
41. Wheeler DS, Underhill SM, Stolz DB, Murdoch GH, Thiels E, Romero G, et al. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine. Proc Natl Acad Sci U S A. 2015;112(51):E7138–47. doi: 10.1073/pnas.1511670112 26553986; PubMed Central PMCID: PMC4697400.
42. Underhill SM, Hullihen PD, Chen J, Fenollar-Ferrer C, Rizzo MA, Ingram SL, et al. Amphetamines signal through intracellular TAAR1 receptors coupled to Galpha13 and GalphaS in discrete subcellular domains. Mol Psychiatry. 2019. doi: 10.1038/s41380-019-0469-2 31399635.
43. Underhill SM, Wheeler DS, Li M, Watts SD, Ingram SL, Amara SG. Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons. Neuron. 2014;83(2):404–16. doi: 10.1016/j.neuron.2014.05.043 25033183; PubMed Central PMCID: PMC4159050.
44. Lominac KD, McKenna CL, Schwartz LM, Ruiz PN, Wroten MG, Miller BW, et al. Mesocorticolimbic monoamine correlates of methamphetamine sensitization and motivation. Front Syst Neurosci. 2014;8:70. doi: 10.3389/fnsys.2014.00070 24847220; PubMed Central PMCID: PMC4019853.
45. Thanos PK, Kim R, Delis F, Rocco MJ, Cho J, Volkow ND. Effects of chronic methamphetamine on psychomotor and cognitive functions and dopamine signaling in the brain. Behav Brain Res. 2017;320:282–90. doi: 10.1016/j.bbr.2016.12.010 27993694.
46. Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M, et al. Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci. 2001;21(23):9414–8. 11717374.
47. Volkow ND, Wang GJ, Smith L, Fowler JS, Telang F, Logan J, et al. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release. Neuroimage. 2015;121:20–8. doi: 10.1016/j.neuroimage.2015.07.035 26208874.
48. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38. doi: 10.1038/npp.2009.110 19710631; PubMed Central PMCID: PMC2805560.
49. Hart AB, Engelhardt BE, Wardle MC, Sokoloff G, Stephens M, de Wit H, et al. Genome-wide association study of d-amphetamine response in healthy volunteers identifies putative associations, including cadherin 13 (CDH13). PLoS One. 2012;7(8):e42646. doi: 10.1371/journal.pone.0042646 22952603; PubMed Central PMCID: PMC3429486.
50. Clarke TK, Adams MJ, Davies G, Howard DM, Hall LS, Padmanabhan S, et al. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N = 112 117). Mol Psychiatry. 2017;22(10):1376–84. doi: 10.1038/mp.2017.153 28937693; PubMed Central PMCID: PMC5622124.
51. Huggett SB, Stallings MC. Cocaine'omics: Genome-wide and transcriptome-wide analyses provide biological insight into cocaine use and dependence. Addict Biol. 2019. doi: 10.1111/adb.12719 30734435.
52. Wu Y, Yao YG, Luo XJ. SZDB: A Database for Schizophrenia Genetic Research. Schizophr Bull. 2017;43(2):459–71. doi: 10.1093/schbul/sbw102 27451428; PubMed Central PMCID: PMC5605257.
53. Chang D, Nalls MA, Hallgrimsdottir IB, Hunkapiller J, van der Brug M, Cai F, et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nat Genet. 2017;49(10):1511–6. doi: 10.1038/ng.3955 28892059; PubMed Central PMCID: PMC5812477.
54. Sun Y, Chang S, Liu Z, Zhang L, Wang F, Yue W, et al. Identification of novel risk loci with shared effects on alcoholism, heroin and methamphetamine dependence. bioRxiv. 2018. https://doi.org/10.1101/505917.
55. Li X, Witonsky KR, Lofaro OM, Surjono F, Zhang J, Bossert JM, et al. Role of Anterior Intralaminar Nuclei of Thalamus Projections to Dorsomedial Striatum in Incubation of Methamphetamine Craving. J Neurosci. 2018;38(9):2270–82. doi: 10.1523/JNEUROSCI.2873-17.2018 29371321; PubMed Central PMCID: PMC5830515.
56. Schwartz MD, Canales JJ, Zucchi R, Espinoza S, Sukhanov I, Gainetdinov RR. Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets. 2018;22(6):513–26. doi: 10.1080/14728222.2018.1480723 29798691.
57. Xue Z, Siemian JN, Johnson BN, Zhang Y, Li JX. Methamphetamine-induced impulsivity during chronic methamphetamine treatment in rats: Effects of the TAAR 1 agonist RO5263397. Neuropharmacology. 2018;129:36–46. doi: 10.1016/j.neuropharm.2017.11.012 29128305.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy