Abiotic, present-day and historical effects on species, functional and phylogenetic diversity in dry grasslands of different age
Autoři:
Rocío Belinchón aff001; Lucie Hemrová aff002; Zuzana Münzbergová aff001
Působiště autorů:
Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
aff001; Institute of Botany CAS, Průhonice, Czech Republic
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223826
Souhrn
Many grasslands have disappeared over the last century as a result of anthropogenic land use intensification, while new patches are emerging through abandonment of arable fields. Here, we compared species (SD), functional (FD) and phylogenetic (PD) (alpha) diversity among 272 dry grassland patches of two age-classes: old and new, with the new patches being dry grasslands established on previous intensively managed fields during the last 30 years. We first compared SD, FD and PD, between patches of different age. Then, we performed generalized linear models to determine the influence of abiotic, present-day and historical landscape configuration variables on SD, FD and PD. By measuring abiotic variables, we explained the effect of environmental filtering on species diversity, whereas the present-day and historical landscape configuration variables were included to describe how the spatial and temporal configuration of the patches influence patterns of species. Finally, we applied partial regressions to explore the relative importance of abiotic, present-day and historical variables in explaining the diversity metrics and how this varies between patches of different ages. We found higher SD in the old compared to the new patches, but no changes in FD and PD. SD was mostly affected by abiotic and present-day landscape configuration variables in the new and the old patches, respectively. In the new patches, historical variables explained variation in the FD, while present-day variables explained the PD. In the old patches, historical variables accounted for most of the variation in both FD and PD. Our evidence suggests that the relative importance of assembly processes has changed over time, showing that environmental filtering and changes in the landscape configuration prevented the establishment of species in the new patches. However, the loss of species (i.e. SD) is not necessarily linked to a loss of functions and evolutionary potential.
Klíčová slova:
Community ecology – Grasslands – Phylogenetics – principal component analysis – Seeds – Species colonization – Species diversity – Community assembly
Zdroje
1. Dornelas M, Gotelli NJ, Mcgill B, Shimadzu H, Moyes F, Sievers C, et al. Assemblage time series reveal biodiversity change but not systematic loss. Science. 2014; 344: 296–299. doi: 10.1126/science.1248484 24744374
2. Cousins SAO. Landscape history and soil properties affect grassland decline and plant species richness in rural landscapes. Biol Cons. 2009a; 142: 2752–2758. https://doi.org/10.1016/j.biocon.2009.07.001
3. Bičík I, Jeleček L, Štěpánek V. Land-use changes and their social driving forces in Czechia in the 19th and 20th centuries. Land Use Policy. 2001; 18: 65–73. https://doi.org/10.1016/S0264-8377(00)00047-8
4. Václavík T, Rogan J. Identifying Trends in Land Use/Land Cover Changes in the Context of Post-Socialist Transformation in Central Europe: A Case Study of the Greater Olomouc Region, Czech Republic. GISCI Remote Sens. 2009; 46: 54–76. https://doi.org/10.2747/1548-1603.46.1.54
5. Dahlström A, Cousins SAO, Eriksson O. The history (1620–2003) of land use, people and livestock, and the relationship to present plant species diversity in a rural landscape in Sweden. Environ Hist. 2006; 12: 191–212. https://doi.org/10.3197/096734006776680218
6. Hemrová L, Münzbergová Z. The effects of plant traits on species’ responses to present and historical patch configurations and patch age. Oikos. 2015; 124: 437–445. https://doi.org/10.1111/oik.01130
7. Knappová J, Hemrová L, Münzbergová Z. Colonization of central European abandoned fields by dry grassland species depends on the species richness of the source habitats: a new approach for measuring habitat isolation. Landscape Ecol. 2012; 27: 97–108. https://doi.org/10.1007/s10980-011-9680-5
8. Chýlová T, Münzbergová Z. Past land use co-determines the present distribution of dry grassland plant species. Preslia. 2008; 80: 183–198.
9. Knappová J, Münzbergová Z. Low seed pressure and competition from resident vegetation restricts dry grassland specialists to edges of abandoned fields. Agric Ecosyst Environ. 2015; 200: 200–207. https://doi.org/10.1016/j.agee.2014.11.008
10. Knappová J, Hemrová L, Knapp M, Münzbergová Z. Establishment limitation may be more important than species dispersal: insights from dry grasslands and old-fields. J Veg Sci. 2017; 25: 34–42. https://doi.org/10.1111/jvs.12462
11. Conradi T, Temperton VM, Kollmann J. Beta diversity of plant species in human-transformed landscapes: control of community assembly by regional productivity and historical connectivity. Perspect Plant Ecol Syst. 2017; 24: 1–10. https://doi.org/10.1016/j.ppees.2016.10.001
12. Münzbergová Z, Herben T. Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations. Oecologia. 2005; 145: 1–8. doi: 10.1007/s00442-005-0052-1 16028092
13. Schmid B, Poschlod P, Prentice HC. The contribution of successional grasslands to the conservation of semi-natural grasslands species—A landscape perspective. Biol Cons. 2017; 206: 112–119. doi: 10.1016/j.biocon.2016.12.002
14. Kladivová A, Münzbergová Z. Interacting effects of grazing and habitat conditions on seedling recruitment and establishment. J Veg Sci. 2016; 27: 834–843. doi: 10.1111/jvs.12395
15. Hanski I. The shrinking world: Ecological consequences of habitat loss. Oldendorf/Luhe: International Ecology Institute; 2005.
16. Eriksson O, Cousins SAO, Bruun HH. Land-use history and fragmentation of traditionally managed grasslands in Scandinavia. J Veg Sci. 2002; 13: 743–748. doi: 10.1111/j.1654-1103.2002.tb02102.x
17. Husáková I, Münzbergová Z. The effects of current and historical landscape structure and species life-history traits on species distribution in dry grassland-like forest openings. J Veg Sci. 2016; 27: 545–556. doi: 10.1111/jvs.12390
18. Krauss J, Klein A-M, Steffan-Dewenter I, Tscharntke T. Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers Conserv. 2004; 13: 1427–1439. doi: 10.1023/B:BIOC.0000021323.18165.58
19. Cousins SAO, Ohlson H, Eriksson O. Effects of historical and present fragmentation on plant species diversity in semi-natural grasslands in Swedish rural landscapes. Landscape Ecol. 2007; 22: 723–730. doi: 10.1007/s10980-006-9067-1
20. Öster M, Cousins SAO, Eriksson O. Size and heterogeneity rather than landscape context determine plant species richness in semi-natural grasslands. J Veg Sci 2007; 18: 859–868. doi: 10.1111/j.1654-1103.2007.tb02602.x
21. Purschke O, Sykes MT, Poschlod P, Michalski SG, Romermann C, Durka W, et al. Interactive effects of landscape history and current management on dispersal trait diversity in grassland plant communities. J Ecol. 2014; 102: 437–446. doi: 10.1111/1365-2745.12199 25506086
22. Lindborg R, Eriksson O. Historical landscape connectivity affects present plant species diversity. Ecology. 2004; 85: 1840–1845. doi: 10.1890/04-0367
23. Herben T, Münzbergová Z, Mildén M, Ehrlén J, Cousins SAO, Eriksson O. Long-term spatial dynamics of Succisa pratensis in a changing rural landscape: linking dynamical modelling with historical maps. J Ecol. 2006; 94: 131–143. doi: 10.1111/j.1365-2745.2005.01063.x
24. Cousins SAO. Extinction debt in fragmented grasslands: paid or not? J Veg Sci. 2009; 20: 3–7. doi: 10.1111/j.1654-1103.2009.05647.x
25. Alstad AO, Damschen EI, Givnish TJ, Harrington JA, Leach MK, Rogers DA, et al. The pace of plant community change is accelerating in remnant prairies. Sci Adv. 2016; 2: e1500975. doi: 10.1126/sciadv.1500975 26989775
26. Jacquemyn H, Brys R, Hermy M. Short-term effects of different management regimes on the response of calcareous grassland vegetation to increased nitrogen. Biol Cons. 2003; 111: 137–147. doi: 10.1016/S0006-3207(02)00256-2
27. Tribot A-S, Mouquet N, Villéger S, Raymond M, Hoff F, Boissery P, et al. Taxonomic and functional diversity increase the aesthetic value of coralligenous reefs. Sci Rep. 2016; 6: 34229. doi: 10.1038/srep34229 27677850
28. McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends Ecol Evol. 2006; 21: 178–185. doi: 10.1016/j.tree.2006.02.002 16701083
29. Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, et al. Let the concept of trait be functional! Oikos. 2007; 116: 882–892. doi: 10.1111/j.2007.0030–1299.15559.x
30. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu Rev Ecol Evol Syst. 2002; 33: 475–505. doi: 10.1146/annurev.ecolsys.33.010802.150448
31. Hooper DU, Solan M, Symstad A, Gessner N, Buchmann V, Degrange P, et al. Species diversity, functional diversity, and ecosystem functioning. In: Loreau M, Naeem S, Inchausti P, editors. Biodiversity and ecosystem functioning: synthesis and perspectives New York: Oxford University Press; 2002. pp.195–208.
32. Swenson NG. The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. Am J Bot. 2011; 98: 472–480. doi: 10.3732/ajb.1000289 21613140
33. Cardoso P, Rigal F, Carvalho JC, Fortelius M, Borges PAV, Podani J, et al. Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. J Biogeogr. 2014; 41: 749–761. doi: 10.1111/jbi.12239
34. Hermant M, Hennion F, Bartish I, Yguel B. Disparate relatives: life histories vary more in genera occupying intermediate environments. Perspect Plant Ecol Syst. 2012; 14: 283–301. doi: 10.1016/j.ppees.2012.02.001
35. Knapp S, Dinsmore L, Fissore C, Hobbie SE, Jakobsdottir I, Kattge J, et al. Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology. 2012; 93: S83–S98. doi: 10.1890/11-0392.1
36. Götzenberger L, de Bello F, Bråthen A, Davison J, Dubuis A, Guisan A, et al. Ecological assembly rules in plant communities–approaches, patterns and prospects. Biol Rev. 2012; 87: 111–127. doi: 10.1111/j.1469-185X.2011.00187.x 21692965
37. Jarzyna MA, Jetz W. Detecting the multiple facets of biodiversity. Trends Ecol Evol. 2016; 31: 527–538. doi: 10.1016/j.tree.2016.04.002 27168115
38. De Victor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett. 2010; 13: 1030–1040. doi: 10.1111/j.1461-0248.2010.01493.x 20545736
39. Münzbergová Z. Effect of spatial scale on factors limiting species distribution in dry grassland fragments. J Ecol. 2004; 92: 854–867. doi: 10.1111/j.0022-0477.2004.00919.x
40. Silva JP, Toland J, Jones W, Eldridge J, Thorpe E, O’Hara E. LIFE and Europe’s grasslands: Restoring a forgotten habitat. Luxembourg: European Commission. 2008.
41. Grman E, Bassett T, Zirbel CR, Brudvig LA. Dispersal and establishment filters influence the assembly of restored prairie plant communities. Restor Ecol. 2015; 23: 892–899. doi: 10.1111/rec.12271
42. Fournier B, Mouly A, Moretti M, Gillet F. Contrasting processes drive alpha and beta taxonomic, functional and phylogenetic diversity of orthopteran communities in grasslands. Agric Ecosyst Environ. 2017; 242: 43–52. doi: 10.1016/j.agee.2017.03.021
43. Barak RS, Lichtenberger TM, Wellman-Houde A, Kramer AT, Larkin DJ. Cracking the case: seed traits and phylogeny predict time to germination in prairie restoration species. Ecol Evol. 2018; 8: 5551–5562. doi: 10.1002/ece3.4083 29938073
44. Koyanagi T, Kusumoto Y, Yamamoto S, Okubo S, Iwasaki N, Takeuchi K. Grassland plant functional groups exhibit distinct time-lags in response to historical landscape change. Plant Ecol. 2012; 213: 327–338. doi: 10.1007/s11258-011-9979-y
45. Barak RS, Williams EW, Hipp AL, Bowles ML, Carr GM, Sherman R, et al. Restored tallgrass prairies have reduced phylogenetic diversity compared with remnants. J Appl Ecol. 2017; 54: 1080–1090. doi: 10.1111/1365-2664.12881
46. Dinnage R. Disturbance alters the phylogenetic composition and structure of plant communities in an old field system. PLoS One. 2009; 4: e7071. doi: 10.1371/journal.pone.0007071 19763265
47. Purschke O, Schmid BC, Sykes MT, Poschlod P, Michalski SG, Durka W, et al. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes. J Ecol. 2013; 101: 857–866. doi: 10.1111/1365-2745.12098
48. Dainese M, Lepš J, de Bello F. Different effects of elevation, habitat fragmentation and grazing management on the functional, phylogenetic and taxonomic structure of mountain grasslands. Perspect Plant Ecol Syst. 2015; 17: 44–53. doi: 10.1016/j.ppees.2014.09.002
49. Saar L, de Bello F, Pärtel M, Helm A. Trait assembly in grasslands depends on habitat history and spatial scale. Oecologia. 2017; 184: 1–12. doi: 10.1007/s00442-017-3812-9 28101635
50. Ellenberg H. Vegetation ecology of Central Europe. Cambridge: Cambridge University Press. 1988.
51. Beven KJ, Kirkby MJ. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Bulletin. 1979; 24: 43–69. doi: 10.1080/02626667909491834
52. Löbel S, Dengler J, Hobohm C. Species richness of vascular plants, bryophytes and lichens in dry grasslands: the effects of environment, landscape structure and competition. Folia Geobot. 2006; 41: 377–393. doi: 10.1007/BF02806555
53. Tremlová K, Münzbergová Z. Importance of species traits for species distribution in fragmented landscapes. Ecology. 2007; 88: 965–977. doi: 10.1890/06-0924 17536712
54. de Bello F, Carmona CP, Lepš J, Szava-Kovats R, Pärtel M. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia. 2016; 180: 933–940. doi: 10.1007/s00442-016-3546-0 26796409
55. Laliberté E, Legendré P, Shipley B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. 2015; Version 1.0–12. Available from: https://cran.r-project.org/web/packages/FD/index.html
56. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, et al. The LEDA traitbase: a database of life-history traits of the northwest European flora. J Ecol. 2008; 96: 1266–1274. doi: 10.1111/j.1365-2745.2008.01430.x
57. Klimešová J, de Bello F. CLO-PLA: the database of clonal and bud bank traits of central European flora. J Veg Sci. 2009; 20: 511–516. doi: 10.1002/ecy.1745 28122127
58. Hejný S, Slavík B, Chrtek J, Tomšovic P, Kovanda M, Flora of the Czech Socialist Republic. Prague: Academia. 1995–2010.
59. Borhidi A. Social behavior types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Bot Hung. 1995; 39: 97–181.
60. Schleuter D, Daufresne M, Massol F, Argillier C. A user’s guide to functional diversity indices. Ecol Monogr 2010; 80: 469–484. doi: 10.1890/08-2225.1
61. Durka W, Michalski SG. DaPhnE: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology. 2012; 93: 2297. doi: 10.1890/12-0743.1
62. Hazler Pilepić K, Friščić M, Duran A, Maslo S, Garić R, Čuljak S, et al. Contribution to Globularia phylogeny based on nuclear ribosomal spaces and two chloroplast DNA regions. Periodicum Biologorum. 2016; 118: 417–424. doi: 10.18054/pb.v118i4.3856
63. Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics. 2004; 20: 289–290. doi: 10.1093/bioinformatics/btg412 14734327
64. Pike N. Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol. Evol. 2; 278–282.
65. Peres-Neto PR, Legendre P, Dray S, Borcard D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology. 2006; 87: 2614–2625. doi: 10.1890/0012-9658(2006)87[2614:vposdm]2.0.co;2 17089669
66. Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed effects models using lme4. J Stat Softw. 2015; 67: 1–48. doi: 10.18637/jss.v067.i01
67. Barbosa AM, Brown JA, Jimenez-Valverde A, Real R. modEvA: Model Evaluation and Analysis. 2016; Version 1.3.2. Available from https://cran.r-project.org/web/packages/modEvA/index.html
68. Gerhold P, Price JN, Püssa K, Kalamees R, Aher K, Kaasik A, et al. Functional and phylogenetic community assembly linked to changes in species diversity in a long-term resource manipulation experiment. J Veg Sci. 2013; 24: 843–852. doi: 10.1111/jvs.12052
69. Letten AD, Keith DA, Tozer MG. Phylogenetic and functional dissimilarity does not increase during temporal heathland succession. Proc R Soc Lond [Biol]. 2016; 281: 20142102. doi: 10.1098/rspb.2014.2102 25377459
70. Jackson ST, Sax DF. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol. 2010; 25: 153–60. doi: 10.1016/j.tree.2009.10.001 19879014
71. Zhu L, Fu B, Zhu H, Wang C, Jiao L, Zhou J. Trait choice profoundly affected the ecological conclusions drawn from functional diversity measures. Sci Rep. 2017; 7: 3643. doi: 10.1038/s41598-017-03812-8 28623286
72. Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, et al. Why intraspecific trait variation matters in community ecology. Trends Ecol Evol. 2011; 26: 183–192. doi: 10.1016/j.tree.2011.01.009 21367482
73. Larkin DJ, Hipp AL, Kattge J, Prescott W, Tonietto RK, Jacobi SK, Bowles ML. Phylogenetic measures of plant communities show long-term change and impacts of fire management in tallgrass prairie remnants. 2015. J Appl Ecol, 52; 1638–1648. doi: 10.1111/1365-2664.12516
74. Hubbell SP. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton: Princeton University Press; 2001.
75. Purschke O, Sykes MT, Reital T, Poschlod P, Prentice HC. Linking landscape history and dispersal traits in grassland plant communities. Oecologia. 2012; 168: 773–783. doi: 10.1007/s00442-011-2142-6 21956664
76. Purschke O, Michalski SG, Bruelheide H, Durka W. Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales. Ecol Evol. 2017; 7: 11079–11091. doi: 10.1002/ece3.3564 29299283
77. Thompson K, Petchey OL, Askew AP, Dunnett NP, Beckerman AP, Willis AJ. Little evidence for limiting similarity in a long-term study of a roadside plant community. J Ecol. 2012; 98: 480–487. doi: 10.1111/j.1365-2745.2009.01610.x
78. Bennie J, Hill MO, Baxter R, Huntley B. Influence of slope and aspect on long-term vegetation change in British chalk grasslands. J Ecol. 2006; 94: 355–368. doi: 10.1111/j.1365-2745.2006.01104.x
79. Grime JP. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci. 2006; 17: 255–260. doi: 10.1111/j.1654-1103.2006.tb02444.x
80. Cadott MW, Tucker CM. Should environmental filtering be abandoned? Trends Ecol Evol. 2017; 32: 429–437. doi: 10.1016/j.tree.2017.03.004 28363350
81. Fahrig L. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst. 2003; 34: 487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419
82. Jocque M, Field R, Brendonck L, De Mester LD. Climatic control of dispersal-ecological specialization trade-offs: a metacommunity process at the heart of the latitudinal diversity gradient? Glob Ecol Biogeogr. 2010; 19: 244–252. doi: 10.1111/j.1466-8238.2009.00510.x
83. Münzbergová Z. Seed density significantly affects species richness and composition in experimental plant communities. PLoS One. 2012; 7: e46704. doi: 10.1371/journal.pone.0046704 23077519
84. Matos FAR, Magnago LFS, Gastauer M, Carreira JMB, Simonelli M, Meira-Neto JAA, et al. Effects of landscape configuration and composition on phylogenetic diversity of tres in a highly fragmented tropical forest. J Ecol. 2017; 105: 265–276. doi: 10.1111/1365-2745.12661
85. Plue J, Cousins SAO. Temporal dispersal in fragmented landscapes. Biol Cons. 2013; 160: 250–262. doi: 10.1016/j.biocon.2013.02.010
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy