Korean soybean core collection: Genotypic and phenotypic diversity population structure and genome-wide association study
Autoři:
Namhee Jeong aff001; Ki-Seung Kim aff002; Seongmun Jeong aff003; Jae-Yoon Kim aff003; Soo-Kwon Park aff001; Ju Seok Lee aff005; Soon-Chun Jeong aff005; Sung-Taeg Kang aff006; Bo-Keun Ha aff007; Dool-Yi Kim aff001; Namshin Kim aff003; Jung-Kyung Moon aff008; Man Soo Choi aff001
Působiště autorů:
National Institute of Crop Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
aff001; FarmHannong, Ltd., Daejeon, Republic of Korea
aff002; Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
aff003; Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
aff004; Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk-do, Republic of Korea
aff005; Department of Crop Science & Biotechnology, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
aff006; Division of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
aff007; National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
aff008
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224074
Souhrn
A core collection is a subset that represents genetic diversity of the total collection. Soybean (Glycine max (L.) Merr.) is one of major food and feed crops. It is the world’s most cultivated annual herbaceous legume. Constructing a core collection for soybean could play a pivotal role in conserving and utilizing its genetic variability for research and breeding programs. To construct and evaluate a Korean soybean core collection, genotypic and phenotypic data as well as population structure, were analyzed. The Korean soybean core collection consisted of 430 accessions selected from 2,872 collections based on Affymetrix Axiom® 180k SoyaSNP array data. The core collection represented 99% of genotypic diversity of the total collection. Analysis of population structure clustered the core collection into five subpopulations. Accessions from South Korea and North Korea were distributed across five subpopulations. Analysis of molecular variance indicated that only 2.01% of genetic variation could be explained by geographic origins while 16.18% of genetic variation was accounted for by subpopulations. Genome-wide association study (GWAS) for days to flowering, flower color, pubescent color, and growth habit confirmed that the core collection had the same genetic diversity for tested traits as the total collection. The Korean soybean core collection was constructed based on genotypic information of the 180k SNP data. Size and phenotypic diversity of the core collection accounted for approximately 14.9% and 18.1% of the total collection, respectively. GWAS of core and total collections successfully confirmed loci associated with tested traits. Consequently, the present study showed that the Korean soybean core collection could provide fundamental and practical material and information for both soybean genetic research and breeding programs.
Klíčová slova:
Crop genetics – Crops – Genetic polymorphism – Genome-wide association studies – Phenotypes – Plant growth and development – Population genetics – Soybean
Zdroje
1. Brown AHD. Core collections: a practical approach to genetic resources management. Genome. 1989; 31: 818–24.
2. Upadhyaya HD. Establishing core collections for enhanced use of germplasm in crop improvement. Ekin J Crop Breed and Gen. 2015; 1–1: 1–12.
3. Bhandari HR, Bhanu AN, Srivastava K, Singh MN, Shreya, Hemantaranjan A. Assessment of genetic diversity in crop plants–An overview. Advances in Plants & Agriculture Research. 2017; 7(3): 00255.
4. Guo Y, Li Y, Hong H, Qiu LJ. Establishment of the integrated applied core collection and its comparison with mini core collection in soybean (Glycine Max). The Crop Journal. 2014. pp. 38–45.
5. Marshall DR. Limitations to the use of germplasm collections. In: Brown AHD, Frankel OH, Marshall ER, Williams JT, editors. The use of plant genetic resources. New York: Cambridge University Press; 1989. pp. 105–120.
6. Oliveira MF, Nelson RL, Geraldi IO, Cruz CD, Toledo JFF. Establishing a soybean germplasm core collection. Field Crops Research. 2010; 119: 227–289.
7. Odong TL, Jansen J, Eeuwijk FA, Hintum TJL. Quality of core collection for effective utilization of genetic resources review, discussion and interpretation. Theor Appl Genet. 2013; 126: 289–305. doi: 10.1007/s00122-012-1971-y 22983567
8. Li ZC, Zhang HI, Cao YS, Qiu ZE, Wei XH, Tang SX, et al. Studies on the sampling strategy for primary core collection of Chinese ingenious rice. Acta Agron Sin. 2003; 29: 20–24.
9. Dong YC, Cao YS, Zhang SC, Wang LF, You GX, Pang BS, et al. Establishment of candidate core collections in Chinese common wheat germplasm. J Plant Genet Resour. 2003; 4: 1–8.
10. Xu H, Mei Y, Hu J, Zhu J, Gong P. Sampling a core collection of island cotton (Gossypiumbar badense L.) based on the genotypic values of fiver traits. Resour Crop Evol. 2006; 53: 515–521.
11. Holbook CC, Anderson WF. Evaluation of a core collection to identify resistance to late leafspot in peanut. Crop Sci. 1995; 35: 1700–1702.
12. Lee HY, Ro NY, Jeong HJ, Kwon JK, Jo J, Ha Y, et al. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. BMC Genetics. 2016; 17: 142. doi: 10.1186/s12863-016-0452-8 27842492
13. Xu C, Gao J, Du Z, Li D, Wang Z, Li Y, et al. Identifying the genetic diversity, genetic structure and a core collection of Ziziphus jujube Mill. Var. jujube accessions using microsatellite markers. Nature Scientific Reports. 2016; 6: 31503.
14. Hu J, Wang P, Su Y, Wang R, Li Q, Sun K. Microsatellite diversity, population structure, and core collection formation in Melon germplasm. Plant Mol Biol Rep. 2015; 33: 439–447.
15. Diwan N, McIntosh MS, Bauchan GR. Methods of developing a core collection of annual Medicago species. Theor Appl Genet. 1995; 90: 755–761. doi: 10.1007/BF00222008 24172915
16. Wang LX, Guan Y, Guan RX, Li YH, Ma YS, Dong ZM, et al. Establishment of Chinese soybean (Glycine max) core collections with agronomic traits and SSR markers. Euphytica. 2006; 151: 215–223.
17. Kaga A, Shimizu T, Watanabe S, Tsubokura Y, Katoyose Y, Harada K, et al. Evaluation of soybean germplasm conserved in NIAS genebank and development of mini core collections. Breeding Science. 2012; 61: 566–592. doi: 10.1270/jsbbs.61.566 23136496
18. Qiu LJ, Xing LL, Guo Y, Wang J, Jackson SA, Change RZ. A platform for soybean molecular breeding: the utilization of core collections for food security. Plant mol. Biol. 2013; 83: 41–50. doi: 10.1007/s11103-013-0076-6 23708950
19. Chang RZ, Qiu J, Sun J, Chen Y, Li X, Xu Z. Collection and conservation of soybean germplasm in China. In: Proc. World Soybean Research Conference VI, Chicago, IL, 4–7, August 1999. National Soybean Research Lab, Urbana, 1999. pp. 172–176.
20. Carter TE, Nelson RL, Sneller CH, Cui Z. Genetic diversity in soybean. In: Boerma HR, Specht JE. (Eds), Soybeans: Improvement, Production and Uses, vol. 16, 3rd ed. American Society of Agronomy, Madison, 2004. pp. 303–416.
21. Zhao L, Dong Y, Liu B, Hao S, Wang K, Li X. Establishment of a core collection for the Chinese annual wild soybean (Glycine soja). Chinese Science Bulletin. 2005; 50: 989–996.
22. Kuroda Y, Tomooka N, Kaga A, Wanigadeva SMSW, Vaughan DA. Genetic diversity of wild soybean (Glycine soja Sieb. Et Zucc.) and Japanese cultivated soybeans [G. max (L.) Merr.] based on microsatellite (SSR) analysis and the selection of a core collection. Cenet Resour Crop Evol. 2009; 56: 1045–1055.
23. Brown AHD, Grace JP, Speer SS. Designation of a core collection of perennial Glycine. Soybean Genetics Newsletter. 1987; 14: 59–70.
24. Cho GT, Yoon MS, Lee J, Baek HJ, Kang JH, Kim TS, et al. Development of a core set of Korean soybean landraces [Glycine max (L.) Merr.]. J Crop Sci Biotech. 2008; 11: 157–162.
25. Priolli RHG, Wysmierski PT, Cunha CP, Pinheiro JB, Vello NA. Genetic structure and a selected core set of Brazilian soybean cultivars. Genetics and Molecular Biology. 2013; 36: 382–390. doi: 10.1590/S1415-47572013005000034 24130446
26. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 2009; 10: 582. doi: 10.1186/1471-2164-10-582 19961604
27. Akhunov E, Nicolet C, Dvorak J. Single nucleotide polymorphism genotyping in polyploidy wheat with the Illumina GoldenGate assay. Theor Appl Genet. 2009; 119: 507–517. doi: 10.1007/s00122-009-1059-5 19449174
28. Hyten DL, Song QJ, Fickus EW, Quigley CV, Lim JS, et al. High throughput SNP discovery and assay development in common bean. BMC Genomics. 2010; 11: 475. doi: 10.1186/1471-2164-11-475 20712881
29. Ganal MW, Durstewitz G, Polley A, Be´rard A, Buckler ES, et al. A large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE. 2011; 6: e28334. doi: 10.1371/journal.pone.0028334 22174790
30. Bachlava E, Taylor CA, Tang S, Bowers JE, Mandel JR, et al. SNP discovery and development of a high-density genotyping array for sunflower. PLoS ONE. 2012; 7: e29814. doi: 10.1371/journal.pone.0029814 22238659
31. Chagne´ D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, et al. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS ONE. 2012; 7: e31745. doi: 10.1371/journal.pone.0031745 22363718
32. Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW, et al. Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS ONE. 2012; 7: e40563. doi: 10.1371/journal.pone.0040563 22802968
33. Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, et al. Development and evaluation of SoySNP50K, a high density genotyping array for soybean. PLoS ONE. 2013; 8: e54985. doi: 10.1371/journal.pone.0054985 23372807
34. Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990; 12: 13–15.
35. Lee YG, Jeong N, Kim JH, Lee K, Kim KH, Pirani A, et al. Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J. 2015; 81: 625–636. doi: 10.1111/tpj.12755 25641104
36. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004; 20: 289–290. doi: 10.1093/bioinformatics/btg412 14734327
37. Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics. 2014; 197: 573–589. doi: 10.1534/genetics.114.164350 24700103
38. Logsdon BA, Hoffman GE, Mezey JG. A variational bayes algorithm for fast and accurate multiple locus genome-wide association analysis. BMC Bioinformatics. 2010; 11: 58. doi: 10.1186/1471-2105-11-58 20105321
39. Carbonetto P, Stephens M. Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies. Bayesian Anal. 2012; 7: 73–108.
40. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Molecular Ecology Resources. 2010; 10: 564–567. doi: 10.1111/j.1755-0998.2010.02847.x 21565059
41. Michalakis Y, Excoffier L. A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics. 1996; 142:1061–1064. 8849912
42. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics. 1992; 131: 479–491. 1644282
43. Jeong S, Kim JY, Jeong SC, Kang ST, Moon JK, Kim N. GenoCore: A simple and fast algorithm for core subset selection from large genotype datasets. PLoS ONE. 2017; 12: e0181420. doi: 10.1371/journal.pone.0181420 28727806
44. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010; 42: 355–360. doi: 10.1038/ng.546 20208535
45. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012; 28: 2397–2399. doi: 10.1093/bioinformatics/bts444 22796960
46. Aulchenko YS, Ripke S, Isaacs A, Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007; 23: 1294–1296. doi: 10.1093/bioinformatics/btm108 17384015
47. Takahashi R, Benitez ER, Funatsuki H, Ohnishi S. Soybean maturity and pubescence color genes improve chilling tolerance. Crop Sci. 2005; 45: 1387–1393.
48. Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, et al. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci. 2010; 107: 8563–8568. doi: 10.1073/pnas.1000088107 20421496
49. Yang K, Jeong N, Moon JK, Lee YH, Lee SH, Kim HM, et al. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. Journal of Heredity. 2010; 101: 757–768. doi: 10.1093/jhered/esq078 20584753
50. Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics. 2008; 180: 995–1007. doi: 10.1534/genetics.108.092742 18780733
51. Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, et al. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics. 2009; 182: 1251–1262. doi: 10.1534/genetics.108.098772 19474204
52. Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, et al. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics. 2011; 188:395–407. doi: 10.1534/genetics.110.125062 21406680
53. Xu M, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, et al. The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiology. 2015; 168:1735–1746. doi: 10.1104/pp.15.00763 26134161
54. Hu J, Zhu J, Xu HM. Methods of constructing core collection by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor Appl Genet. 2000; 101: 264–268.
55. Liu XB, Li J, Yang ZL. Genetic diversity and structure of core collection of winter mushroom (Flammulina velutipes) developed by genomic SSR markers. Hereditas. 2018; 155: 3. doi: 10.1186/s41065-017-0038-0 28690478
56. van Hintum ThJL, Brown AHD, Spillane C, Hodgkin T. Core collections of plant genetic resources. IPGRI Technical Bulletin No. 3. International Plant Genetic Resources Institute, Rome, Italy. 2000.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy