Sleep problems are a strong predictor of stress-related metabolic changes in police officers. A prospective study
Autoři:
Sergio Garbarino aff001; Nicola Magnavita aff001
Působiště autorů:
Post-graduate School of Occupational Health, Università Cattolica del Sacro Cuore, Rome, Italy
aff001; State Police Health Service Department, Ministry of the Interior, Rome, Italy
aff002; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI), Genoa, Italy
aff003; Department of Woman/Child & Public Health, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224259
Souhrn
Objective
Previous studies have shown that workers chronically exposed to occupational stress have an increased risk of metabolic syndrome (MetS) and sleep problems (SPs). The purpose of this study was to verify whether SPs mediate the relationship between stress and MetS.
Method
A 5-year prospective cohort study included 242 police officers from a rapid response unit engaged exclusively in maintaining law and order. Perceived stress levels were measured repeatedly with the demand-control-support and the effort-reward-imbalance questionnaires; insomnia symptoms were assessed with the Pittsburgh Sleep Quality Index; excessive daytime sleepiness was measured using the Epworth Sleepiness Scale. MetS and its components were evaluated at baseline and at follow-up.
Results
During 5-year follow-up period, 26 new cases of MetS were identified. Both occupational stress and SPs were significantly related to incident cases of MetS. Insomnia symptoms showed a highly significant association with MetS (aOR 11.038; CI95% 2.867–42.493). Mediation analysis confirmed that SPs mediate the relationship between stress and MetS.
A reciprocal relationship was found between job stress and SPs. Work-related stress was a significant predictor of insomnia symptoms, short sleep duration, sleep dissatisfaction, and sleepiness. Compared to the reference group, police officers with SPs at baseline had significantly higher odds of reporting high stress at follow-up.
Conclusion
SPs play a mediating role in the relationship between occupational stress and MetS. Prevention of MetS must include the control of stress factors and an increase in the resilience of workers, but correct sleep hygiene is also an essential factor.
Klíčová slova:
Insomnia – Metabolic syndrome – Police – Psychological stress – Questionnaires – Regression analysis – Sleep – Sleep disorders
Zdroje
1. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80. doi: 10.1111/j.1464-5491.2006.01858.x 16681555
2. van der Berg JD, Stehouwer CD, Bosma H, van der Velde JH, Willems PJ, Savelberg HH, et al. Associations of total amount and patterns of sedentary behaviour with type 2 diabetes and the metabolic syndrome: The Maastricht Study. Diabetologia. 2016;59(4):709–18. doi: 10.1007/s00125-015-3861-8 26831300
3. Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D. Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care. 2012;35(11):2402–11. doi: 10.2337/dc12-0336 23093685
4. Coteanu C, Gusti A, Coteanu MF, Gusti S. Association of Some Components of the Metabolic Syndrome with the Subtype of Mild Cognitive Impairment. Curr Health Sci J. 2017;43(4):351–354. doi: 10.12865/CHSJ.43.04.11 30595902
5. Mendrick DL, Diehl AM, Topor LS, Dietert RR, Will Y, La Merrill MA, et al. Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicol Sci. 2018;162(1):36–42. doi: 10.1093/toxsci/kfx233 29106690
6. Magnavita N, Fileni A. Work stress and metabolic syndrome in radiologists: first evidence. Radiol Med. 2014;119(2):142–8. doi: 10.1007/s11547-013-0329-0 24297580
7. Magnavita N. Work-related psychological injury is associated with metabolic syndrome components in apparently healthy workers. PLoS One, 2015; 10(6):e0130944. doi: 10.1371/journal.pone.0130944 26086387
8. Kang MG, Koh SB, Cha BS, Park JK, Woo JM, Chang SJ. Association between job stress on heart rate variability and metabolic syndrome in shipyard male workers. Yonsei Med J. 2004;45(5):838–46. doi: 10.3349/ymj.2004.45.5.838 15515194
9. Kawada T. Relationship between components of the metabolic syndrome and job strain using a brief job stress questionnaire (BJSQ). Int Arch Occup Environ Health. 2013;86(6):725–6. doi: 10.1007/s00420-013-0870-0 23584233
10. Djindjic N, Jovanovic J, Djindjic B, Jovanovic M, Jovanovic JJ. Associations between the occupational stress index and hypertension, type 2 diabetes mellitus, and lipid disorders in middle-aged men and women. Ann Occup Hyg. 2012;56(9):1051–62. doi: 10.1093/annhyg/mes059 22986427
11. Chandola T, Brunner E, Marmot M. Chronic stress at work and the metabolic syndrome: prospective study. BMJ. 2006;332:521–525. doi: 10.1136/bmj.38693.435301.80 16428252
12. Edwards EM, Stuver SO, Heeren TC, Fredman L. Job strain and incident metabolic syndrome over 5 years of follow-up: the coronary artery risk development in young adults study. J Occup Environ Med 2012 54 1447–1452. doi: 10.1097/JOM.0b013e3182783f27 23171915
13. Bergmann N, Gyntelberg F, Faber J. The appraisal of chronic stress and the development of the metabolic syndrome: a systematic review of prospective cohort studies. Endocr Connect. 2014;3(2):R55–80. doi: 10.1530/EC-14-0031 24743684
14. Siegrist J, Li J. Work Stress and Altered Biomarkers: A Synthesis of Findings Based on the Effort-Reward Imbalance Model. Int J Environ Res Public Health. 2017;14(11). pii: E1373. doi: 10.3390/ijerph14111373 29125555
15. Magnavita N, Capitanelli I, Garbarino S, Pira E. Work-related stress as a cardiovascular risk factor in police officers. A systematic review of evidence. Int Arch Occup Environ Health, doi: 10.1007/s00420-018-1290-y 29344727
16. Pedersen JM, Lund R, Andersen I, Clark AJ, Prescott E, Rod NH. Psychosocial risk factors for the metabolic syndrome: A prospective cohort study. Int J Cardiol. 2016;215:41–6. doi: 10.1016/j.ijcard.2016.04.076 27107545
17. Watanabe K, Sakuraya A, Kawakami N, Imamura K, Ando E, Asai Y, et al. Work-related psychosocial factors and metabolic syndrome onset among workers: a systematic review and meta-analysis. Obes Rev. 2018;19(11):1557–1568. doi: 10.1111/obr.12725 30047228
18. Garbarino S, Magnavita N. Work Stress and Metabolic Syndrome in Police Officers. A Prospective Study. PLoS ONE 2015;10(12): e0144318. doi: 10.1371/journal.pone.0144318 26641879
19. Garbarino S, Lanteri P, Durando P, Magnavita N, Sannita WG. Co-morbidity, mortality, quality of life and the healthcare/welfare/social costs of disordered sleep. Int J Environ Res Public Health. 2016;13(8). pii: E831. doi: 10.3390/ijerph13080831 27548196
20. Gagnadoux F, Priou P, Urban T, Meslier N, Trzepizur W. Sleep apneas, metabolic syndrome and cardiovascular risk: Data from the Pays de la Loire sleep cohort. Rev Pneumol Clin. 2017;73(6):299–305. doi: 10.1016/j.pneumo.2017.09.001 29122399
21. Kim JY, Yadav D, Ahn SV, Koh SB, Park JT, Yoon J, et al. A prospective study of total sleep duration and incident metabolic syndrome: the ARIRANG study. Sleep Med. 2015;16(12):1511–5. doi: 10.1016/j.sleep.2015.06.024 26611949
22. Song Q, Liu X, Zhou W, Wang X, Wu S. Changes in sleep duration and risk of metabolic syndrome: the Kailuan prospective study. Sci Rep. 2016;6:36861. doi: 10.1038/srep36861 27857185
23. Chaput JP, McNeil J, Després JP, Bouchard C, Tremblay A. Short sleep duration as a risk factor for the development of the metabolic syndrome in adults. Prev Med. 2013;57(6):872–7. doi: 10.1016/j.ypmed.2013.09.022 24099879
24. Itani O, Kaneita Y, Tokiya M, Jike M, Murata A, Nakagome S, et al. Short sleep duration, shift work, and actual days taken off work are predictive life-style risk factors for new-onset metabolic syndrome: a seven-year cohort study of 40,000 male workers. Sleep Med. 2017;39:87–94. doi: 10.1016/j.sleep.2017.07.027 29157594
25. Ostadrahimi A, Nikniaz Z, Faramarzi E, Mohammadpoorasl A, Ansarin K, Somi MH. Does long sleep duration increase risk of metabolic syndrome in Azar cohort study population? Health Promot Perspect. 2018; 27;8(4):290–295. doi: 10.15171/hpp.2018.41 30479983
26. Titova OE, Lindberg E, Elmståhl S, Lind L, Schiöth HB, Benedict C. Associations Between the Prevalence of Metabolic Syndrome and Sleep Parameters Vary by Age. Front Endocrinol (Lausanne). 2018;9:234. doi: 10.3389/fendo.2018.00234 29867766
27. Shiozaki M, Miyai N, Morioka I, Utsumi M, Koike H, Arita M, et al. Assessment of the risk of ischemic heart disease and its relevant factors among Japanese police officers. Sangyo Eiseigaku Zasshi. 2013;55(4):115–24. 23676527
28. Lian Y, Yuan Q, Wang G, Tang F. Association between sleep quality and metabolic syndrome: A systematic review and meta-analysis. Psychiatry Res. 2019;274:66–74. doi: 10.1016/j.psychres.2019.01.096 30780064
29. Magnavita N, Garbarino S. Sleep, Health and Wellness at Work: A Scoping Review. Int J Environ Res Public Health. 2017;14(11). pii: E1347. doi: 10.3390/ijerph14111347 29113118
30. Salo P, Ala-Mursula L, Rod NH, Tucker P, Pentti J, Kivimäki M, et al. Work time control and sleep disturbances: prospective cohort study of Finnish public sector employees. Sleep. 2014;37(7):1217–25. doi: 10.5665/sleep.3842 25061250
31. Vedaa Ø, Harris A, Bjorvatn B, Waage S, Sivertsen B, Tucker P, et al. Systematic review of the relationship between quick returns in rotating shift work and health-related outcomes. Ergonomics. 2016;59(1):1–14. doi: 10.1080/00140139.2015.1052020 26072668
32. Chazelle E, Chastang JF, Niedhammer I. Psychosocial work factors and sleep problems: findings from the French national SIP survey. Int Arch Occup Environ Health. 2016;89(3):485–95. doi: 10.1007/s00420-015-1087-1 26376909
33. Burman D. Sleep Disorders: Circadian Rhythm Sleep-Wake Disorders. FP Essent. 2017;460:33–36. 28845960
34. Magnavita N, Di Stasio E, Capitanelli I, Lops EA, Chirico F, Garbarino S. Sleep problems and workplace violence: A systematic review and meta-analysis. Frontiers in Neuroscience, 2019 (in press)
35. Akerstedt T. Psychosocial stress and impaired sleep. Scand J Work Environ Health. 2006;32(6):493–501 17173205
36. Schwarz J, Gerhardsson A, van Leeuwen W, Lekander M, Ericson M, Fischer H, et al. Does sleep deprivation increase the vulnerability to acute psychosocial stress in young and older adults? Psychoneuroendocrinology. 2018;96:155–165. doi: 10.1016/j.psyneuen.2018.06.003 29982098
37. Ahmed AE, Albalawi AN, Alshehri AA, AlBlaihed RM, Alsalamah MA. Stress and its predictors in pregnant women: a study in Saudi Arabia. Psychol Res Behav Manag. 2017;10:97–102. doi: 10.2147/PRBM.S131474 28435340
38. Bassett SM, Lupis SB, Gianferante D, Rohleder N, Wolf JM. Sleep quality but not sleep quantity effects on cortisol responses to acute psychosocial stress. Stress. 2015;18(6):638–44. doi: 10.3109/10253890.2015.1087503 26414625
39. Goodin BR, Smith MT, Quinn NB, King CD, McGuire L. Poor sleep quality and exaggerated salivary cortisol reactivity to the cold pressor task predict greater acute pain severity in a non-clinical sample. Biol Psychol. 2012;91(1):36–41. doi: 10.1016/j.biopsycho.2012.02.020 22445783
40. Solomonova E, Lee YEA, Robins S, King L, Feeley N, Gold I, et al. Sleep quality is associated with vasopressin methylation in pregnant and postpartum women with a history of psychosocial stress. Psychoneuroendocrinology. 2019;107:160–168. doi: 10.1016/j.psyneuen.2019.05.010 31132568
41. Glazer S, Liu C. Work, Stress, Coping, and Stress Management. In: Oxford Research Encyclopedia of Psychology. Published online April 2017 | e-ISBN: 9780190236557 | https://dx.doi.org/10.1093/acrefore/9780190236557.013.30
42. Burr H, Formazin M, Pohrt A. Methodological and conceptual issues regarding occupational psychosocial coronary heart disease epidemiology. Scand J Work Environ Health. 2016;42(3):251–5. doi: 10.5271/sjweh.3557 26960179
43. Chirico F. Job stress models for predicting burnout syndrome: a review. Ann Ist Super Sanita. 2016;52(3):443–456. doi: 10.4415/ANN_16_03_17 27698304
44. Karasek RA. Job demands. job decision latitude. and mental strain. Implication for job redesign. Adm Sci Q 1979; 24: 285–308
45. Siegrist J. Adverse health effects of high-effort/low-reward conditions. J Occup Health Psychol 1996; 1:27–41 9547031
46. Garbarino S, Magnavita N, Elovainio M, Heponiemi T, Ciprani F, Cuomo G, et al. Police job strain during routine activities and a major event. Occup Med (Lond). 2011; 61(6):395–9
47. Garbarino S, Chiorri C, Magnavita N. Personality traits of the Five-Factor Model are associated with work-related stress in special force police officers. Int Arch Occup Environ Health 2014;87(3):295–306. doi: 10.1007/s00420-013-0861-1 23463443
48. Chiorri C, Garbarino S, Bracco F, Magnavita N. Personality Traits Moderate the Effect of Workload Sources on Perceived Workload in Flying Column Police Officers. Front. Psychol. 2015;6:1835. doi: 10.3389/fpsyg.2015.01835 26640456
49. Garbarino S, Cuomo G, Chiorri C, Magnavita N. Association of work-related stress with mental health problems in a special police force. BMJOpen 2013;3(7). pii: e002791. doi: 10.1136/bmjopen-2013-002791 23872288
50. da Silva ME, Coeli CM, Ventura M, Palacios M, Magnanini MM, Camargo TM, et al. Informed consent for record linkage: a systematic review. J Med Ethics. 2012;38(10):639–42. doi: 10.1136/medethics-2011-100208 22403083
51. Legislative Decree 196, 30/6/2003 “Codice in materia di protezione dei dati personali”. http://garanteprivacy.it/web/guest/home/docweb/-/docweb-display/docweb/1311248
52. Magnavita N. Two tools for health surveillance of job stress: the Karasek Job Content Questionnaire and the Siegrist Effort Reward Imbalance Questionnaire. G Ital Med Lav Ergon 2007; 29 (3): 667–670
53. Sale JE, Kerr MS. The psychometric properties of Karasek’s demand and control scales within a single sector: data from a large teaching hospital. Int Arch Occup Environ Health. 2002; 75(3):145–52. doi: 10.1007/s004200100289 11954981
54. Niedhammer I. Psychometric properties of the French version of the Karasek Job Content Questionnaire: a study of the scales of decision latitude, psychological demands, social support, and physical demands in the GAZEL cohort. Int Arch Occup Environ Health. 2002; 75(3):129–44. doi: 10.1007/s004200100270 11954980
55. Griep RH, Rotenberg L, Vasconcellos AG, Landsbergis P, Comaru CM, Alves MG. The psychometric properties of demand-control and effort-reward imbalance scales among Brazilian nurses. Int Arch Occup Environ Health. 2009; 82(10):1163–72. doi: 10.1007/s00420-009-0460-3 19756699
56. Sanne B, Torp S, Mykletun A, Dahl AA. The Swedish Demand-Control-Support Questionnaire (DCSQ): factor structure, item analyses, and internal consistency in a large population. Scand J Public Health. 2005; 33(3):166–74. doi: 10.1080/14034940410019217 16040456
57. Fujishiro K, Landsbergis PA, Diez-Roux AV, Stukovsky KH, Shrager S, Baron S. Factorial invariance, scale reliability, and construct validity of the job control and job demands scales for immigrant workers: the multi-ethnic study of atherosclerosis. J Immigr Minor Health. 2011; 13(3):533–40. doi: 10.1007/s10903-010-9364-2 20582720
58. Pelfrene E, Vlerick P, Mak R, Smets Pd, Kornitzer M, Backer Gd. Scale reliability and validity of the Karasek ‘Job Demand–Contol–Support’ model in the Belstress study. Work Stress 2001; 15:297–313.
59. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index (PSQI): A new instrument for psychiatric research and practice. Psychiatry Res 1989; 28(2), 193–213 doi: 10.1016/0165-1781(89)90047-4 2748771
60. Garbarino S, De Carli F, Nobili L, Mascialino B, Squarcia S, Penco MA, et al. Sleepiness and sleep disorders in shift workers: a study on a group of Italian police officers. Sleep. 2002;25(6):648–53. 12224843
61. Garbarino S, Magnavita N. Obstructive sleep apnea syndrome (OSAS), metabolic syndrome and mental health in small enterprise workers. Feasibility of an action for health. PLoS One. 2014; 9(5): e97188. doi: 10.1371/journal.pone.0097188 24810290
62. Mollayeva T, Thurairajah P, Burton K, Mollayeva S, Shapiro CM, Colantonio A. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: A systematic review and meta-analysis. Sleep Med Rev. 2016;25:52–73. doi: 10.1016/j.smrv.2015.01.009 26163057
63. American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed. American Academy of Sleep Medicine, Darien, IL, 2014.
64. Australasian Sleep Association. Insomnia. https://www.sleep.org.au/documents/item/355
65. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.; DSM-5). Washington, DC: 2013.
66. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540–5. doi: 10.1093/sleep/14.6.540 1798888
67. Kendzerska TB, Smith PM, Brignardello-Petersen R, Leung RS, Tomlinson GA. Evaluation of the measurement properties of the Epworth sleepiness scale: a systematic review. Sleep Med Rev. 2014;18(4):321–31. doi: 10.1016/j.smrv.2013.08.002 24135493
68. Johns MW. Sleepiness in different situations measured by the Epworth Sleepiness Scale. Sleep. 1994;17(8):703–10. doi: 10.1093/sleep/17.8.703 7701181
69. Johns MW. Epworth Sleepiness Scale, official website. http://epworthsleepinessscale.com/about-the-ess/ Accessed July 7, 2018.
70. International Diabetes Foundation IDF. 2006. The IDF consensus worldwide definition of the metabolic syndrome. http://www.idf.org/webdata/docs/IDF_Meta_def_final.pdf
71. National Cholesterol Education Program: Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–2497 doi: 10.1001/jama.285.19.2486 11368702
72. Hayes AF. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. New York, NY: The Guilford Press; 2013.
73. Hanson LL, Åkerstedt T, Näswall K, Leineweber C, Theorell T, Westerlund H. Cross-lagged relationships between workplace demands, control, support, and sleep problems. Sleep. 2011;34(10):1403–10. doi: 10.5665/SLEEP.1288 21966072
74. Johannessen HA, Sterud T. Psychosocial factors at work and sleep problems: a longitudinal study of the general working population in Norway. Int Arch Occup Environ Health. 2017;90(7):597–608. doi: 10.1007/s00420-017-1222-2 28429107
75. Hansen ÅM, Grynderup MB, Rugulies R, Conway PM, Garde AH, Török E, et al. A cohort study on self-reported role stressors at work and poor sleep: does sense of coherence moderate or mediate the associations? Int Arch Occup Environ Health. 2018;91(4):445–456. doi: 10.1007/s00420-018-1294-7 29383438
76. Dietch JR, Ruggero CJ, Schuler K, Taylor DJ, Luft BJ, Kotov R. Posttraumatic stress disorder symptoms and sleep in the daily lives of World Trade Center responders. J Occup Health Psychol. 2019 Jun 17. doi: 10.1037/ocp0000158 31204820
77. Garbarino S, Guglielmi O, Puntoni M, Bragazzi NL, Magnavita N. Sleep Quality among Police Officers: Implications and Insights from a Systematic Review and Meta-Analysis of the Literature. Int J Environ Res Public Health. 2019;16(5). pii: E885. doi: 10.3390/ijerph16050885 30862044
78. Fekedulegn D, Burchfiel CM, Charles LE, Hartley TA, Andrew ME, Violanti JM. Shift Work and Sleep Quality Among Urban Police Officers: The BCOPS Study. J Occup Environ Med. 2016;58(3):e66–71. doi: 10.1097/JOM.0000000000000620 26949891
79. Violanti JM, Burchfiel CM, Hartley TA, Mnatsakanova A, Fekedulegn D, Andrew ME, et al. Atypical work hours and metabolic syndrome among police officers. Arch Environ Occup Health. 2009;64(3):194–201. doi: 10.1080/19338240903241259 19864222
80. Hartley TA, Violanti JM, Sarkisian K, Fekedulegn D, Mnatsakanova A, Andrew ME, et al. Association Between Police-Specific Stressors and Sleep Quality: Influence of Coping and Depressive Symptoms. J Law Enforc Leadersh Ethics. 2014;1(1):31–48. 28480317
81. Yoo H, Franke WD. Sleep habits, mental health, and the metabolic syndrome in law enforcement officers. J Occup Environ Med. 2013;55(1):99–103. doi: 10.1097/JOM.0b013e31826e294c 23207742
82. McCanlies EC, Slaven JE, Smith LM, Andrew ME, Charles LE, Burchfiel CM, et al. Metabolic syndrome and sleep duration in police officers. Work. 2012;43(2):133–9 doi: 10.3233/WOR-2012-1399 22927620
83. Hartley TA, Burchfiel CM, Fekedulegn D, Andrew ME, Violanti JM. Health disparities in police officers: comparisons to the U.S. general population. Int J Emerg Ment Health. 2011;13(4):211–20. 22900455
84. Theorell T. A long-term perspective on cardiovascular job stress research. J Occup Health. 2019;61(1):3–9. doi: 10.1002/1348-9585.12032 30698340
85. Eddy P, Wertheim EH, Kingsley M, Wright BJ. Associations between the effort-reward imbalance model of workplace stress and indices of cardiovascular health: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;83:252–266. doi: 10.1016/j.neubiorev.2017.10.025 29111334
86. Siegrist J, Li J. Work Stress and Altered Biomarkers: A Synthesis of Findings Based on the Effort-Reward Imbalance Model. Int J Environ Res Public Health. 2017;14(11). pii: E1373. doi: 10.3390/ijerph14111373 29125555
87. Karasek R, Collins S, Clays E, Bortkiewicz A, Ferrario M. Description of a large-scale study design to assess work-stress-disease associations for cardiovascular disease. Int J Occup Med Environ Health. 2010;23(3):293–312. 21306975
88. Kivimäki M, Jokela M, Nyberg ST, Singh-Manoux A, Fransson EI, Alfredsson L, et al. Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603,838 individuals. Lancet. 2015;386(10005):1739–46. doi: 10.1016/S0140-6736(15)60295-1 26298822
89. Kivimäki M, Kawachi I. Work Stress as a Risk Factor for Cardiovascular Disease. Curr Cardiol Rep. 2015;17(9):630. doi: 10.1007/s11886-015-0630-8 26238744
90. Fishta A, Backé EM. Psychosocial stress at work and cardiovascular diseases: an overview of systematic reviews. Int Arch Occup Environ Health. 2015;88(8):997–1014. doi: 10.1007/s00420-015-1019-0 25687981
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy