Attenuation of renal fibrosis after unilateral ureteral obstruction in mice lacking the N-type calcium channel
Autoři:
Keiichiro Mishima aff001; Masao Nakasatomi aff001; Shunsuke Takahashi aff001; Hidekazu Ikeuchi aff001; Toru Sakairi aff001; Yoriaki Kaneko aff001; Keiju Hiromura aff001; Yoshihisa Nojima aff001; Akito Maeshima aff001
Působiště autorů:
Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi, Japan
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223496
Souhrn
The N-type Ca2+ channel (Cav2.2) is distributed in sympathetic nerves that innervate the tubules, the vessels, and the juxtaglomerular granular cells of the kidney. However, the role of N-type Ca2+ channels in renal disease remains unknown. To address this issue, Cav2.2 knockout mice were utilized. Immunoreactive Cav2.2 was undetectable in normal kidneys of C57BL/6N mice, but it became positive in the interstitial S100-positive nerve fibers after unilateral ureteral obstruction (UUO). There were no significant differences in mean blood pressure, heart rate, and renal function between wild-type littermates and Cav2.2-knockout mice at baseline, as well as after UUO. Cav2.2 deficiency significantly reduced the EVG-positive fibrotic area, alpha-SMA expression, the production of type I collagen, and the hypoxic area in the obstructed kidneys. The expression of tyrosine hydroxylase, a marker for sympathetic neurons, was significantly increased in the obstructed kidneys of wild-type mice, but not in Cav2.2-knockout mice. These data suggest that increased Cav2.2 is implicated in renal nerve activation leading to the progression of renal fibrosis. Blockade of Cav2.2 might be a novel therapeutic approach for preventing renal fibrosis.
Klíčová slova:
Fibrosis – Hypoxia – Immunostaining – Kidneys – Mouse models – Nerve fibers – Quantitative analysis – Renal system
Zdroje
1. Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol. 2010;21:1819–34. doi: 10.1681/ASN.2010080793 20864689
2. Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol. 2010;6(11):643–56. doi: 10.1038/nrneph.2010.120 20838416.
3. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684–96. doi: 10.1038/nrneph.2011.149 22009250.
4. Barajas L, Powers K. Monoaminergic innervation of the rat kidney: a quantitative study. Am J Physiol. 1990;259(3 Pt 2):F503–11. Epub 1990/09/01. doi: 10.1152/ajprenal.1990.259.3.F503 2396676.
5. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77(1):75–197. Epub 1997/01/01. doi: 10.1152/physrev.1997.77.1.75 9016301.
6. Fogo AB. Glomerular hypertension, abnormal glomerular growth, and progression of renal diseases. Kidney Int Suppl. 2000;75:S15–21. Epub 2000/06/01. doi: kid7505 [pii]. 10828756.
7. Zoccali C, Mallamaci F, Tripepi G, Parlongo S, Cutrupi S, Benedetto FA, et al. Norepinephrine and concentric hypertrophy in patients with end-stage renal disease. Hypertension. 2002;40(1):41–6. doi: 10.1161/01.hyp.0000022063.50739.60 12105136.
8. Klein IH, Ligtenberg G, Neumann J, Oey PL, Koomans HA, Blankestijn PJ. Sympathetic nerve activity is inappropriately increased in chronic renal disease. J Am Soc Nephrol. 2003;14(12):3239–44. Epub 2003/11/26. doi: 10.1097/01.asn.0000098687.01005.a5 14638922.
9. Kim J, Padanilam BJ. Renal nerves drive interstitial fibrogenesis in obstructive nephropathy. J Am Soc Nephrol. 2013;24(2):229–42. doi: 10.1681/ASN.2012070678 23264683; PubMed Central PMCID: PMC3559485.
10. Ma MC, Huang HS, Chen CF. Impaired renal sensory responses after unilateral ureteral obstruction in the rat. J Am Soc Nephrol. 2002;13(4):1008–16. PubMed 11912260.
11. Veelken R, Vogel EM, Hilgers K, Amann K, Hartner A, Sass G, et al. Autonomic renal denervation ameliorates experimental glomerulonephritis. J Am Soc Nephrol. 2008;19(7):1371–8. doi: 10.1681/ASN.2007050552 18400940; PubMed Central PMCID: PMC2440306.
12. Chung YH, Shin CM, Kim MJ, Shin DH, Yoo YB, Cha CI. Spatial and temporal distribution of N-type Ca(2+) channels in gerbil global cerebral ischemia. Brain Res. 2001;902(2):294–300. Epub 2001/06/01. doi: 10.1016/s0006-8993(01)02443-x 11384625.
13. Valentino K, Newcomb R, Gadbois T, Singh T, Bowersox S, Bitner S, et al. A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc Natl Acad Sci U S A. 1993;90(16):7894–7. Epub 1993/08/15. doi: 10.1073/pnas.90.16.7894 8102803; PubMed Central PMCID: PMC47249.
14. Bowersox SS, Singh T, Luther RR. Selective blockade of N-type voltage-sensitive calcium channels protects against brain injury after transient focal cerebral ischemia in rats. Brain Res. 1997;747(2):343–7. Epub 1997/02/07. doi: 10.1016/s0006-8993(96)01325-x 9046013.
15. Kobayashi N, Mori Y, Mita S, Nakano S, Kobayashi T, Tsubokou Y, et al. Effects of cilnidipine on nitric oxide and endothelin-1 expression and extracellular signal-regulated kinase in hypertensive rats. Eur J Pharmacol. 2001;422(1–3):149–57. Epub 2001/06/30. doi: 10.1016/s0014-2999(01)01067-6 11430925.
16. Zhou X, Ono H, Ono Y, Frohlich ED. N- and L-type calcium channel antagonist improves glomerular dynamics, reverses severe nephrosclerosis, and inhibits apoptosis and proliferation in an l-NAME/SHR model. J Hypertens. 2002;20(5):993–1000. Epub 2002/05/16. doi: 10.1097/00004872-200205000-00035 12011661
17. Fan YY, Kohno M, Nakano D, Ohsaki H, Kobori H, Suwarni D, et al. Cilnidipine suppresses podocyte injury and proteinuria in metabolic syndrome rats: possible involvement of N-type calcium channel in podocyte. J Hypertens. 2010;28(5):1034–43. Epub 2010/04/23. doi: 10.1097/hjh.0b013e328336ade3 20411599; PubMed Central PMCID: PMC2879137.
18. Lei B, Nakano D, Fujisawa Y, Liu Y, Hitomi H, Kobori H, et al. N-type calcium channel inhibition with cilnidipine elicits glomerular podocyte protection independent of sympathetic nerve inhibition. J Pharmacol Sci. 2012;119(4):359–67. doi: 10.1254/jphs.12075fp 22863666; PubMed Central PMCID: PMC3443282.
19. Toba H, Yoshida M, Tojo C, Nakano A, Oshima Y, Kojima Y, et al. L/N-type calcium channel blocker cilnidipine ameliorates proteinuria and inhibits the renal renin-angiotensin-aldosterone system in deoxycorticosterone acetate-salt hypertensive rats. Hypertens Res. 2011;34(4):521–9. doi: 10.1038/hr.2010.279 21270815.
20. Konda T, Enomoto A, Matsushita J, Takahara A, Moriyama T. The N- and L-type calcium channel blocker cilnidipine suppresses renal injury in dahl rats fed a high-sucrose diet, an experimental model of metabolic syndrome. Nephron Physiol. 2005;101(1):p1–13. Epub 2005/05/12. doi: 10.1159/000085713 15886499.
21. Ohno S, Yokoi H, Mori K, Kasahara M, Kuwahara K, Fujikura J, et al. Ablation of the N-type calcium channel ameliorates diabetic nephropathy with improved glycemic control and reduced blood pressure. Scientific reports. 2016;6:27192. doi: 10.1038/srep27192 27273361; PubMed Central PMCID: PMC4895143.
22. Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer SA, Miller RJ, et al. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science. 1988;239(4835):57–61. Epub 1988/01/01. doi: 10.1126/science.2447647 2447647.
23. Ino M, Yoshinaga T, Wakamori M, Miyamoto N, Takahashi E, Sonoda J, et al. Functional disorders of the sympathetic nervous system in mice lacking the alpha 1B subunit (Cav 2.2) of N-type calcium channels. Proc Natl Acad Sci U S A. 2001;98(9):5323–8. doi: 10.1073/pnas.081089398 11296258; PubMed Central PMCID: PMC33208.
24. Saegusa H, Matsuda Y, Tanabe T. Effects of ablation of N- and R-type Ca(2+) channels on pain transmission. Neurosci Res. 2002;43(1):1–7. doi: 10.1016/s0168-0102(02)00017-2 12074836.
25. Hatakeyama S, Wakamori M, Ino M, Miyamoto N, Takahashi E, Yoshinaga T, et al. Differential nociceptive responses in mice lacking the alpha(1B) subunit of N-type Ca(2+) channels. Neuroreport. 2001;12(11):2423–7. doi: 10.1097/00001756-200108080-00027 11496122.
26. Kim C, Jun K, Lee T, Kim SS, McEnery MW, Chin H, et al. Altered nociceptive response in mice deficient in the alpha(1B) subunit of the voltage-dependent calcium channel. Mol Cell Neurosci. 2001;18(2):235–45. doi: 10.1006/mcne.2001.1013 11520183.
27. Mishima K, Maeshima A, Miya M, Sakurai N, Ikeuchi H, Hiromura K, et al. Involvement of N-type Ca(2+) channels in the fibrotic process of the kidney in rats. Am J Physiol Renal Physiol. 2013;304(6):F665–73. doi: 10.1152/ajprenal.00561.2012 23324177.
28. Burgi K, Cavalleri MT, Alves AS, Britto LR, Antunes VR, Michelini LC. Tyrosine hydroxylase immunoreactivity as indicator of sympathetic activity: simultaneous evaluation in different tissues of hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2011;300(2):R264–71. doi: 10.1152/ajpregu.00687.2009 21148479.
29. Rittenhouse AR, Zigmond RE. Omega-conotoxin inhibits the acute activation of tyrosine hydroxylase and the stimulation of norepinephrine release by potassium depolarization of sympathetic nerve endings. J Neurochem. 1991;56(2):615–22. doi: 10.1111/j.1471-4159.1991.tb08194.x 1671089.
30. Brosenitsch TA, Katz DM. Physiological patterns of electrical stimulation can induce neuronal gene expression by activating N-type calcium channels. J Neurosci. 2001;21(8):2571–9. PubMed 11306610.
31. Motagally MA, Neshat S, Lomax AE. Inhibition of sympathetic N-type voltage-gated Ca2+ current underlies the reduction in norepinephrine release during colitis. Am J Physiol Gastrointest Liver Physiol. 2009;296(5):G1077–84. doi: 10.1152/ajpgi.00006.2009 19264956.
32. Yamashita S, Maeshima A, Kojima I, Nojima Y. Activin A is a potent activator of renal interstitial fibroblasts. J Am Soc Nephrol. 2004;15(1):91–101. doi: 10.1097/01.asn.0000103225.68136.e6 14694161.
33. Maeshima A, Zhang YQ, Nojima Y, Naruse T, Kojima I. Involvement of the activin-follistatin system in tubular regeneration after renal ischemia in rats. J Am Soc Nephrol. 2001;12(8):1685–95. PubMed 11461941.
34. Maeshima A, Maeshima K, Nojima Y, Kojima I. Involvement of Pax-2 in the action of activin A on tubular cell regeneration. J Am Soc Nephrol. 2002;13(12):2850–9. doi: 10.1097/01.asn.0000035086.93977.e9 12444203.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy