Relations between gross motor skills and executive functions, controlling for the role of information processing and lapses of attention in 8-10 year old children
Autoři:
Irene M. J. van der Fels aff001; Joanne Smith aff001; Anne G. M. de Bruijn aff002; Roel J. Bosker aff002; Marsh Königs aff004; Jaap Oosterlaan aff004; Chris Visscher aff001; Esther Hartman aff001
Působiště autorů:
University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands
aff001; University of Groningen, Groningen Institute for Educational Research, Groningen, The Netherlands
aff002; University of Groningen, Faculty of Behavioral and Social Sciences, Department of Educational Sciences, Groningen, The Netherlands
aff003; Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, Emma Neuroscience Group, Department of Pediatrics, Amsterdam Reproduction & Development, Amsterdam, The Netherlands
aff004; Vrije Universiteit Amsterdam, Clinical Neuropsychology Section, Amsterdam, The Netherlands
aff005; VU University Medical Center, Department of Pediatrics, Amsterdam, The Netherlands
aff006
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224219
Souhrn
This study aimed to systematically investigate the relation between gross motor skills and aspects of executive functioning (i.e. verbal working memory, visuospatial working memory, response inhibition and interference control) in 8–10 year old children. Additionally, the role of information processing (speed and variability) and lapses of attention in the relation between gross motor skills and executive functions was investigated. Data of 732 Dutch children from grade 3 and 4 were analyzed (50.0% boys, 50.4% grade 3, age = 9.16 ± 0.64 years). Gross motor skills were assessed using three items of the Körper Koordinationstest für Kinder and one item of the Bruininks-Oseretsky test of Motor Proficiency, Second Edition. Executive functions were assessed using the Wechsler Digit Span task (verbal working memory), the Visuospatial Memory task (visuospatial working memory), the Stop Signal task (response inhibition) and a modified version of the Flanker task (interference control). Information processing and lapses of attention were obtained by applying an ex-Gaussian analysis on go trials of the Stop Signal task. Multilevel regression analysis showed that gross motor skills were significantly related to verbal working memory, visuospatial working memory and response inhibition, but not to interference control. Lapses of attention was a significant predictor for all executive functions, whereas processing speed was not. Variability in processing speed was only predictive for visuospatial working memory. After controlling for information processing and lapses of attention, gross motor skills were only significantly related to visuospatial working memory and response inhibition. The results suggest that after controlling for information processing and lapses of attention, gross motor skills are related to aspects of executive functions that are most directly involved in, and share common underlying processes with, gross motor skills.
Klíčová slova:
Attention – Behavior – Cognition – Children – Information processing – Neural networks – Signal inhibition – Working memory
Zdroje
1. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56. doi: 10.1111/1467-8624.00117 10836557
2. Livesey D, Keen J, Rouse J, White F. The relationship between measures of executive function, motor performance and externalising behaviour in 5-and 6-year-old children. Hum Mov Sci. 2006;25(1):50–64. doi: 10.1016/j.humov.2005.10.008 16442172
3. van der Fels IMJ, te Wierike SC, Hartman E, Elferink-Gemser MT, Smith J, Visscher C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. J Sci Med Sport. 2015;18(6):697–703. doi: 10.1016/j.jsams.2014.09.007 25311901
4. Luz C, Rodrigues LP, Cordovil R. The relationship between motor coordination and executive functions in 4th grade children. Eur J Dev Psychol. 2015;12(2):129–141.
5. Wassenberg R, Feron FJ, Kessels AG, Hendriksen JG, Kalff AC, Kroes M, et al. Relation between cognitive and motor performance in 5- to 6-year-old children: results from a large-scale cross-sectional study. Child Dev. 2005;76(5):1092–1103. doi: 10.1111/j.1467-8624.2005.00899.x 16150004
6. Bishop MR. Chapter 14—Motor. In: Granpeesheh D, Tarbox J, Najdowski AC, Kornack J, editors. Evidence-Based Treatment for Children with Autism: The CARD Model. A volume in Practical Resources for the Mental Health Professional. San Diego, CA: Academic Press; 2014. p. 261–272.
7. Clark JE, Metcalfe JS. The mountain of motor development: A metaphor. Mot Dev Res Rev. 2002;2:163–190.
8. Bornstein MH, Hahn C, Suwalsky JT. Physically developed and exploratory young infants contribute to their own long-term academic achievement. Psychol Sci. 2013;24(10):1906–1917. doi: 10.1177/0956797613479974 23964000
9. Stuss DT. Biological and psychological development of executive functions. Brain Cogn. 1992;20(1):8–23. 1389124
10. Blair C, Razza RP. Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Dev. 2007;78(2):647–663. doi: 10.1111/j.1467-8624.2007.01019.x 17381795
11. Morrison FJ, Ponitz CC, McClelland MM. Self-regulation and academic achievement in the transition to school. In: Calkins SD, Bell MA, editors. Child development at the intersection of emotion and cognition. Washington, DC: American Psychological Association; 2010. p. 203–224.
12. Best JR, Miller PH, Jones LL. Executive functions after age 5: Changes and correlates. Dev Rev. 2009;29(3):180–200. doi: 10.1016/j.dr.2009.05.002 20161467
13. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–168. doi: 10.1146/annurev-psych-113011-143750 23020641
14. Lee K, Bull R, Ho RM. Developmental changes in executive functioning. Child Dev. 2013;84(6):1933–1953. doi: 10.1111/cdev.12096 23550969
15. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognit Psychol. 2000;41(1):49–100. doi: 10.1006/cogp.1999.0734 10945922
16. Baddeley AD, Hitch GJ. Developments in the concept of working memory. Neuropsychology. 1994;8(4):485.
17. Verbruggen F, Logan GD. Response inhibition in the stop-signal paradigm. Trends Cogn Sci. 2008;12(11):418–424. doi: 10.1016/j.tics.2008.07.005 18799345
18. Nigg JT. On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychol Bull. 2000;126(2):220. doi: 10.1037/0033-2909.126.2.220 10748641
19. Rigoli D, Piek JP, Kane R, Oosterlaan J. An examination of the relationship between motor coordination and executive functions in adolescents. Dev Med Child Neurol. 2012;54(11):1025–1031. doi: 10.1111/j.1469-8749.2012.04403.x 22845862
20. Aadland KN, Moe VF, Aadland E, Anderssen SA, Resaland GK, Ommundsen Y. Relationships between physical activity, sedentary time, aerobic fitness, motor skills and executive function and academic performance in children. Ment Health Phys Act. 2017;12:10–18.
21. Ludyga S, Herrmann C, Mücke M, Andrä C, Brand S, Pühse U, et al. Contingent negative variation and working memory maintenance in adolescents with low and high motor competencies. Neural Plast. 2018;2018:1–9.
22. Koutsandréou F, Wegner M, Niemann C, Budde H. Effects of motor versus cardiovascular exercise training on children’s working memory. Med Sci Sports Exerc. 2016;48(6):1144–1152. doi: 10.1249/MSS.0000000000000869 26765631
23. Alesi M, Bianco A, Luppina G, Palma A, Pepi A. Improving children’s coordinative skills and executive functions: the effects of a football exercise program. Percept Mot Skills. 2016;122(1):27–46. doi: 10.1177/0031512515627527 27420304
24. Pesce C, Masci I, Marchetti R, Vazou S, Sääkslahti A, Tomporowski PD. Deliberate play and preparation jointly benefit motor and cognitive development: mediated and moderated effects. Front Psychol. 2016;7:349. doi: 10.3389/fpsyg.2016.00349 27014155
25. Leisman G, Moustafa AA, Shafir T. Thinking, walking, talking: integratory motor and cognitive brain function. Front Public Health. 2016;4:94. doi: 10.3389/fpubh.2016.00094 27252937
26. Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–9685. 9391022
27. Dum RP, Strick PL. The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci. 1991;11(3):667–689. 1705965
28. Künzle H. An Autoradiographic Analysis of the Efferent Connections from Premotor and Adjacent Prefrontal Regions (Areas 6 and 9) in Macaca fascicularis. Brain Behav Evol. 1978;15(3):210–234.
29. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–313. doi: 10.1038/nrn2332 18319727
30. Ludyga S, Mücke M, Kamijo K, Andrä C, Pühse U, Gerber M, et al. The Role of Motor Competences in Predicting Working Memory Maintenance and Preparatory Processing. Child Dev. 2019. doi: 10.1111/cdev.13227 30791099
31. Chang Y, Tsai Y, Chen T, Hung T. The impacts of coordinative exercise on executive function in kindergarten children: an ERP study. Exp Brain Res. 2013;225(2):187–196. doi: 10.1007/s00221-012-3360-9 23239198
32. Ludyga S, Gerber M, Kamijo K, Brand S, Pühse U. The effects of a school-based exercise program on neurophysiological indices of working memory operations in adolescents. J Sci Med Sport. 2018;21(8):833–838. doi: 10.1016/j.jsams.2018.01.001 29358034
33. Diamond A. Effects of Physical Exercise on Executive Functions: Going beyond Simply Moving to Moving with Thought. Ann Sports Med Res. 2015;2(1):1011. 26000340
34. Kail R, Salthouse TA. Processing speed as a mental capacity. Acta Psychol. 1994;86(2–3):199–225.
35. Anderson VA, Anderson P, Northam E, Jacobs R, Catroppa C. Development of executive functions through late childhood and adolescence in an Australian sample. Dev Neuropsychol. 2001;20(1):385–406. doi: 10.1207/S15326942DN2001_5 11827095
36. Hale S. A global developmental trend in cognitive processing speed. Child Dev. 1990;61(3):653–663. 2364741
37. Welsh MC, Pennington BF, Groisser DB. A normative-developmental study of executive function: A window on prefrontal function in children. Dev Neuropsychol. 1991;7(2):131–149.
38. Span MM, Ridderinkhof KR, van der Molen Maurits W. Age-related changes in the efficiency of cognitive processing across the life span. Acta Psychol. 2004;117(2):155–183.
39. Christ SE, White DA, Mandernach T, Keys BA. Inhibitory control across the life span. Dev Neuropsychol. 2001;20(3):653–669. doi: 10.1207/S15326942DN2003_7 12002099
40. Fry AF, Hale S. Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological science. 1996;7(4):237–241.
41. Unsworth N, Redick TS, Lakey CE, Young DL. Lapses in sustained attention and their relation to executive control and fluid abilities: An individual differences investigation. Intelligence. 2010;38(1):111–122.
42. Klotz JM, Johnson MD, Wu SW, Isaacs KM, Gilbert DL. Relationship between reaction time variability and motor skill development in ADHD. Child Neuropsych. 2012;18(6):576–585.
43. Niederer I, Kriemler S, Gut J, Hartmann T, Schindler C, Barral J, et al. Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (Ballabeina): a cross-sectional and longitudinal study. BMC pediatr. 2011;11(11):34.
44. Roebers CM, Kauer M. Motor and cognitive control in a normative sample of 7-year-olds. Dev Sci. 2009;12(1):175–181. doi: 10.1111/j.1467-7687.2008.00755.x 19120425
45. Piek JP, Dyck MJ, Nieman A, Anderson M, Hay D, Smith LM, et al. The relationship between motor coordination, executive functioning and attention in school aged children. Arch Clin Neuropsychol. 2004;19(8):1063–1076. doi: 10.1016/j.acn.2003.12.007 15533697
46. Wechsler D. WISC-III: Wechsler intelligence scale for children. 3ed. San Antonio, TX: Psychological Corporation; 1991.
47. Schaart R, Mies MB, Westerman S. The Dutch Standard Classification of Education, SOI 2006. Statistics Netherlands; 2008.
48. Kiphard EJ, Schilling F. Körperkoordinationstest für kinder: KTK. Weinheim, DE: Beltz Test; 2007.
49. Novak AR, Bennett KJ, Beavan A, Pion J, Spiteri T, Fransen J, et al. The Applicability of a Short Form of the Körperkoordinationstest für Kinder for Measuring Motor Competence in Children Aged 6 to 11 Years. J Motor Learn Dev. 2017;5(2):227–239.
50. Bruininks RH, Bruininks BD. Bruininks-Oseretsky test of motor proficiency. AGS Publishing; 2005.
51. Bruininks BD. Bruininks-Oseretsky Test of Motor Proficiency: BOT-2: NCS Pearson/AGS; 2005.
52. Kaufman AS, Flanagan DP, Alfonso VC, Mascolo JT. Test review: Wechsler intelligence scale for children, (WISC-IV). J Psychoeduc Assess. 2006;24(3):278–295.
53. Wöstmann NM, Aichert DS, Costa A, Rubia K, Möller H, Ettinger U. Reliability and plasticity of response inhibition and interference control. Brain and Cogn. 2013;81(1):82–94.
54. Nutley SB, Söderqvist S, Bryde S, Humphreys K, Klingberg T. Measuring working memory capacity with greater precision in the lower capacity ranges. Dev Neuropsychol. 2009;35(1):81–95.
55. Oosterlaan J, Logan G, Sergeant J. Response inhibition in AD/HD, CD, comorbid AD/HD + CD, anxious, and control children: a meta-analysis of studies with the stop task. J Child Psychol Psychiatry. 1998;39(3):411–425. 9670096
56. Kessels RP, Van Zandvoort MJ, Postma A, Kappelle LJ, De Haan EH. The Corsi block-tapping task: standardization and normative data. Appl Neuropsychol. 2000;7(4):252–258. doi: 10.1207/S15324826AN0704_8 11296689
57. Alloway TP, Gathercole SE, Pickering SJ. Verbal and visuospatial short-term and working memory in children: Are they separable? Child Dev. 2006;77(6):1698–1716. doi: 10.1111/j.1467-8624.2006.00968.x 17107455
58. Westerberg H, Hirvikoski T, Forssberg H, Klingberg T. Visuo-spatial working memory span: a sensitive measure of cognitive deficits in children with ADHD. Child Neuropsychogy. 2004;10(3):155–161.
59. Logan GD, Schachar RJ, Tannock R. Impulsivity and inhibitory control. Psychol Sci. 1997;8(1):60–64.
60. Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of attentional networks. J Cogn Neurosci. 2002;14(3):340–347. doi: 10.1162/089892902317361886 11970796
61. Lacouture Y, Cousineau D. How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutorials Quant Methods Psychol. 2008;4(1):35–45.
62. Geurts HM, Grasman RPPP, Verté S, Oosterlaan J, Roeyers H, van Kammen SM, et al. Intra-individual variability in ADHD, autism spectrum disorders and Tourette’s syndrome. Neuropsychologia. 2008;46(13):3030–3041. doi: 10.1016/j.neuropsychologia.2008.06.013 18619477
63. Leth-Steensen C, King Elbaz Z, Douglas VI. Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach. Acta Psychol. 2000;104(2):167–190.
64. Tabachnick BG, Fidell LS. Using multivariate statistics. Boston, MA: Allyn & Bacon; 2007.
65. Duncan J, Emslie H, Williams P, Johnson R, Freer C. Intelligence and the Frontal Lobe: The Organization of Goal-Directed Behavior. Cogn Psychol. 1996;30(3): 257–303. doi: 10.1006/cogp.1996.0008 8660786
66. Dennis M, Francis DJ, Cirino PT, Schachar R, Barnes MA, Fletcher JM. Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. J Int Neuropsychol Soc. 2009;15(3):331–343. doi: 10.1017/S1355617709090481 19402919
67. Lawson GM, Hook CJ, Farah MJ. A meta-analysis of the relationship between socioeconomic status and executive function performance among children. Dev Sci. 2018;21(2):e12529.
68. Tymms P. Effect sizes in multilevel models. In Schagen I, Elliot K, editors. But what does it mean? The use of effect sizes in educational research. London: National Foundation for Educational Research; 2004. p. 55–56.
69. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.
70. Audiffren M, André N. The strength model of self-control revisited: Linking acute and chronic effects of exercise on executive functions. J Sport Health Sci. 2015;4(1):30–46.
71. Tomporowski PD, McCullick B, Pendleton DM, Pesce C. Exercise and children’s cognition: the role of exercise characteristics and a place for metacognition. J Sport Health Sci. 2015;4(1):47–55.
72. Hagger MS, Chatzisarantis NL. Integrating the theory of planned behaviour and self-determination theory in health behaviour: A meta-analysis. Br J health psychol. 2009;14(2):275–302.
73. Smyth MM, Pearson NA, Pendleton LR. Movement and working memory: Patterns and positions in space. Q J Exp Psychol A. 1988;40(3):497–514. 3175032
74. Quinn J. Towardsa clarification of spatial processing. Q J Exp Psychol A. 1994;47(2):465–480. 8036271
75. Salway AF, Logie RH. Visuospatial working memory, movement control and executive demands. Br J Psychol. 1995;86(2):253–269.
76. Peters S, Handy TC, Lakhani B, Boyd LA, Garland SJ. Motor and visuospatial attention and motor planning after stroke: considerations for the rehabilitation of standing balance and gait. Phys Ther. 2015;95(10):1423–1432. doi: 10.2522/ptj.20140492 25929533
77. Baddeley A. Working memory. Science. 1992;255(5044):556–559. doi: 10.1126/science.1736359 1736359
78. Larson GE, Alderton DL. Reaction time variability and intelligence: A “worst performance” analysis of individual differences. Intelligence. 1990;14(3):309–325.
79. Coyle TR. A review of the worst performance rule: Evidence, theory, and alternative hypotheses. Intelligence. 2003;31(6):567–587.
80. de Greeff JW, Bosker RJ, Oosterlaan J, Visscher C, Hartman E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: a meta-analysis. Journal of Science and Medicine in Sport. 2018;21(5):501–507. doi: 10.1016/j.jsams.2017.09.595 29054748
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy