The black sheep effect: The case of the deviant ingroup robot
Autoři:
Andrew Steain aff001; Christopher John Stanton aff001; Catherine J. Stevens aff001
Působiště autorů:
MARCS Institute, Western Sydney University, Sydney, Australia
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222975
Souhrn
The black sheep effect (BSE) describes the evaluative upgrading of norm-compliant group members (ingroup bias), and evaluative downgrading of deviant (norm-violating) group members, relative to similar outgroup members. While the BSE has been demonstrated extensively in human groups, it has yet to be shown in groups containing robots. This study investigated whether a BSE towards a ‘deviant’ robot (one low on warmth and competence) could be demonstrated. Participants performed a visual tracking task in a team with two humanoid NAO robots, with one robot being an ingroup member and the other an outgroup member. The robots offered advice to the participants which could be accepted or rejected, proving a measure of trust. Both robots were also evaluated using questionnaires, proxemics, and forced preference choices. Experiment 1 (N = 18) manipulated robot grouping to test our group manipulation generated ingroup bias (a necessary precursor to the BSE) which was supported. Experiment 2 (N = 72) manipulated the grouping, warmth and competence of both robots, predicting a BSE towards deviant ingroup robots, which was supported. Results indicated that a disagreeable ingroup robot is viewed less favourably than a disagreeable outgroup robot. Furthermore, when interacting with two independent robots, a “majority rule” effect can occur in which each robot’s opinion is treated as independent vote, with participants significantly more likely to trust two unanimously disagreeing robots. No effect of warmth was found. The impact of these findings for human-robot team composition are discussed.
Klíčová slova:
Behavior – Games – Intelligence – Psychology – Questionnaires – Robots – Robotic behavior – Aptitude tests
Zdroje
1. Freedy E, DeVisser E Weltman, G, Coeyman N. Measurement of trust in human-robot collaboration. Proceeding of the 2007 IEEE International Symposium on Collaborative Technologies and Systems.
2. Eagleson G, Waldersee R, Simmons R. Leadership behaviour similarity as a basis of selection into a management team. British Journal of Social Psychology, 2000; 39(2), 301–308.
3. Platow MJ, McClintock CG, & Liebrand WB. Predicting intergroup fairness and ingroup bias in the minimal group paradigm. European Journal of Social Psychology. 1990; 20(3), 221–239. doi: 10.1002/ejsp.2420200304
4. Dasgupta N. Implicit ingroup favoritism, outgroup favoritism, and their behavioral manifestations. Social Justice Research. 2004; 17(2), 143–169.
5. Mummendey A, Schreiber HJ. Better or just different? Positive social identity by discrimination against, or by differentiation from outgroups. European Journal of Social Psychology. 1983; 13(4), 389–397. doi: 10.1002/ejsp.2420130406
6. Mullen B, Brown R, Smith C. Ingroup bias as a function of salience, relevance, and status: An integration. European Journal of Social Psychology. 1992; 22(2), 103–122. http://dx.doi.org/10.1002/ejsp.2420220202
7. Marques JM, Paez D. The ‘black sheep effect’: Social categorization, rejection of ingroup deviates, and perception of group variability. European review of social psychology. 1994; 5(1), 37–68. doi: 10.1080/14792779543000011
8. Marques JM, Yzerbyt VY, Leyens JP. The “black sheep effect”: Extremity of judgments towards ingroup members as a function of group identification. European Journal of Social Psychology. 1988; 18(1), 1–16. doi: 10.1002/ejsp.2420180102
9. Fu F, Tarnita CE, Christakis NA, Wang L, Rand DG, & Nowak MA. Evolution of in-group favoritism. Scientific Reports. 2012, doi: 10.1038/srep00460 22724059
10. Lazerus T, Ingbretsen ZA, Stolier RM, Freeman JB, Cikara M. Positivity bias in judging ingroup members’ emotional expressions. Emotion. 2016; 16(8), 1117–1125. doi: 10.1037/emo0000227 27775407
11. Efferson C, Lalive R, Fehr E. The Coevolution of Cultural Groups and Ingroup Favoritism. Science. 2008; 321(5897), pp. 1844–1849. doi: 10.1126/science.1155805 18818361
12. Billig M & Tajfel H. Social categorization and similarity in intergroup behaviour. European Journal of Social Psychology. 1973; 3(1), pp. 27–52. doi: 10.1002/ejsp.2420030103
13. Kuchenbrandt D, Eyssel F, Bobinger S, Neufeld M. When a robot’s group membership matters: Anthropomorphization of robots as a function of social categorization. International Journal of Social Robotics. 2013; 5, pp. 409–417.
14. Häring M, Kuchenbrandt D, André E. Would You Like to Play with Me? How Robots’ Group Membership and Task Features Influence Human–Robot Interaction. Proceeding of the 2014 ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 9–16.
15. Deligianis C, Stanton CJ, McGarty C, & Stevens CJ. The Impact of Intergroup Bias on Trust and Approach Behaviour Towards a Humanoid Robot. Journal of Human-Robot Interaction. 2017; 6(3).
16. Hewstone M, Rubin M, Willis H. Intergroup bias. Annual Review of Psychology. 2002; 53(1), 575–604. doi: 10.1146/annurev.psych.53.100901.135109 11752497
17. Mehrabian A. Significance of posture and position in the communication of attitude and status relationships. Psychological Bulletin, 1969; 71(5), 359. doi: 10.1037/h0027349 4892572
18. Harrigan JA. Proxemics, Kinesics, and Gaze. In: Harrigan J, Rosenthal R, Scherer, editors. The New Handbook of Methods in Nonverbal Behavior Research.Oxford University Press, 2008.
19. McCall C, Blascovich J, Young A, Persky S. Proxemic behaviors as predictors of aggression towards Black (but not White) males in an immersive virtual environment. Social Influence. 2009; 4(2), 138–154. doi: 10.1080/15534510802517418
20. Word CO, Zanna MP, Cooper J. The nonverbal mediation of self-fulfilling prophecies in interracial interaction. Journal of Experimental Social Psychology. 1974; 10(2), 109–120. doi: 10.1016/0022-1031(74)90059-6
21. Bessenoff GR, Sherman JW. Automatic and controlled components of prejudice toward fat people: Evaluation versus stereotype activation. Social Cognition. 2000; 18(4), 329–353. doi: 10.1521/soco.2000.18.4.329
22. Marques JM. The black sheep effect: Outgroup homogeneity as a social comparison process. In: Abrams D, Hogg MA, editors. Social identity theory: Constructive and critical advances, (pp. 131–151). Nova Iorque: Harvester Wheatsheaf, 1990.
23. Marques JM, Yzerbyt V. The black sheep effect: Judgmental extremity towards ingroup members in inter-and intra-group situations. European Journal of Social Psychology. 1988; 18(3):287–292. doi: 10.1002/ejsp.2420180308
24. Tajfel H, Turner JC. An Integrative Theory of Intergroup Conflict. In: Worchel S, Austin WG(editors), The Social Psychology of Intergroup Relations (pp. 33–47). Monterey, CA: Brooks/Cole, 1979.
25. Travaglino GA, Abrams D, de Moura GR, Marques JM, Pinto IR. How groups react to disloyalty in the context of intergroup competition: Evaluations of group deserters and defectors. Journal of Experimental Social Psychology. 2014; 54, 178–187. doi: 10.1016/j.jesp.2014.05.006
26. Mendoza SA, Lane SP, Amodio DM. For Members Only Ingroup Punishment of Fairness Norm Violations in the Ultimatum Game. Social Psychological and Personality Science. 2014; 5(6), 662–670. doi: 10.1177/1948550614527115
27. Lo Monaco G, Piermattéo A, Guimelli C, Ernst-Vintila A. Using the black sheep effect to reveal normative stakes: The example of alcohol drinking contexts. European Journal of Social Psychology. 2011; 41(1), 1–5. doi: 10.1002/ejsp.764
28. Jetten J, Hornsey MJ. Deviance and dissent in groups. Annual review of psychology. 2014; 65, 461–485. doi: 10.1146/annurev-psych-010213-115151 23751035
29. Matz DC, Wood W. Cognitive dissonance in groups: the consequences of disagreement. Journal of personality and social psychology. 2005; 88(1), 22. doi: 10.1037/0022-3514.88.1.22 15631572
30. Nemeth C, Brown K, Rogers J. Devil’s advocate versus authentic dissent: Stimulating quantity and quality. European Journal of Social Psychology. 2001; 31(6), 707–720.
31. Packer DJ. Avoiding groupthink whereas weakly identified members remain silent, strongly identified members dissent about collective problems. Psychological Science. 2009; 20(5), 546–548. doi: 10.1111/j.1467-9280.2009.02333.x 19389133
32. Greitemeyer T, Schulz-Hardt S, Frey D. The effects of authentic and contrived dissent on escalation of commitment in group decision making. European Journal of Social Psychology. 2009; 39(4), 639–647.
33. Fiske ST, Cuddy AJ, Glick P, Xu J. A Model of (Often Mixed) Stereotype Content: Competence and Warmth Respectively Follow from Perceived Status and Competition. Journal of Personality and Social Psychology. 2002; 82 (6): 878–902 12051578
34. Fiske ST, Cuddy AJ, Glick P. Universal dimensions of social cognition: warmth and competence. Trends in Cognitive Science. 2007; 11(2), 77–83. doi: 10.1016/j.tics.2006.11.005 17188552
35. Fiske ST. Stereotype Content: Warmth and Competence Endure. Current Directions in Psychological Science. 2018; 27(2) 67–73. doi: 10.1177/0963721417738825 29755213
36. Biernat M, Vescio TK, Billings LS. Black sheep and expectancy violation: Integrating two models of social judgment. European Journal of Social Psychology. 1999; 29(4), 523–54
37. Hutchison P, Abrams D, Randsley de Moura G. Corralling the Ingroup: Deviant Derogation and Perception of Group Variability. The Journal of Social Psychology. 2013; 153(3), 334–350. https://doi.org/10.1080/00224545.2012.738260 23724703
38. Reece MM, Whitman RN. Expressive Movements, Warmth, and Verbal Reinforcement. Journal of Abnormal and Social Psychology. 1962; 64(3), 234–236.
39. LaCrosse MB. Nonverbal behavior and perceived counselor attractiveness and persuasiveness. Journal of Counseling Psychology. 1975; 22(6), 563. doi: 10.1037/0022-0167.22.6.563
40. Kleinke CL. Gaze and eye contact: a research review. Psychological Bulletin, 1986; 100(1), 78. doi: 10.1037//0033-2909.100.1.78 3526377
41. Argyle M, Lefebvre L, Cook M. The meaning of five patterns of gaze. European Journal of Social Psychology.1974; 4(2), 125–136. doi: 10.1002/ejsp.2420040202
42. Smith-Hanen SS. Effects of nonverbal behaviors on judged levels of counselor warmth and empathy. Journal of Counseling Psychology. 1977; 24(2), 87. doi: 10.1037//0022-0167.24.2.87
43. Cacioppo JT, Gardner WL, Berntson GG. Beyond bipolar conceptualizations and measures: The case of attitudes and evaluative space. Personality and Social Psychology Review. 1997; 1(1), 3–25. doi: 10.1207/s15327957pspr0101_2 15647126
44. Mumm J, Mutlu, B. Human-robot proxemics: physical and psychological distancing in human-robot interaction. Proc. of the 6th international conference on Human-Robot Interaction. 2011.
45. Bergmann K, Eyssel F, Kopp S. A second chance to make a first impression? How appearance and nonverbal behavior affect perceived warmth and competence of virtual agents over time. Proc of Intelligent Virtual Agents, 2012, pp. 126–138.
46. Demeure V, Niewiadomski R, Pelachaud C. How is believability of a virtual agent related to warmth, competence, personification, and embodiment? Presence: teleoperators and virtual environments. 2011; 20(5), pp. 431–448.
47. Peters R, Broekens J, Neerincx MA. Robots Educate in Style: The Effect of Context and Non-verbal Behaviour on Children’s Perception of Warmth and Competence. Proceedings of Robot and Human Interactive Communication (RO-MAN), 2017, pp. 449–455.
48. Cuddy A, Glick P, Beninger A. The dynamics of warmth and competence judgments, and their outcomes in organizations. Research in Organizational Behaviour. 2011; 31, pp. 73–98.
49. Hancock PA, Billings DR, Schaefer KE, Chen JY, De Visser EJ, & Parasuraman R. A meta-analysis of factors affecting trust in human-robot interaction. Human Factors: The Journal of the Human Factors and Ergonomics Society. 2011; 53(5), 517–527. doi: 10.1177/0018720811417254 22046724
50. Schaefer K, Chen J, Szalma J, & Hancock P. A Meta-Analysis of Factors Influencing the Development of Trust in Automation: Implications for Understanding Autonomy in Future Systems. The Journal of the Human Factors and Ergonomics Society. 2016; 58(3). doi: 10.1177/0018720816634228 27005902
51. Lee SL, Lau I, Hong Y. Effects of Appearance and Functions on Likability and Perceived Occupational Suitability of Robots. Journal of Cognitive Engineering and Decision Making. 2011, 5(2), pp. 232–250. doi: 10.1177/1555343411409829
52. Lee, SL, Lau I, Kiesler S, Chiu, CY. Human mental models of humanoid robots. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2767–2772.
53. Bartneck C, Kulic D, Croft E, Zoghbi S. Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International Journal of Social Robotics. 2009; 1(1), 71–81
54. Cialdini RB. Influence: The psychology of persuasion. New York: Morrow; 1993.
55. Festinger L. Informal social communication. Psychological review. 1950; 57(5), 271. doi: 10.1037/h0056932 14776174
56. Cialdini RB, Trost MR. Social influence: Social norms, conformity and compliance. In Gilbert DT, Fiske ST, & Lindzey G(editors), The handbook of social psychology (pp. 151–192). New York, NY, US: McGraw-Hill, 1998.
57. Brandstetter J, Racz P, Beckner C, Sandoval EB, Hay J, Bartneck C. A peer pressure experiment: Recreation of the Asch conformity experiment with robots. Paper presented at the International Conference on Intelligent Robots and Systems (IROS 2014).
58. Vasic M, Billard A. Safety issues in human-robot interactions. Paper presented at the 2013 IEEE International Conference on Robotics and Automation (ICRA 2013).
59. Castano E, Paladino MP, Coull A, Yzerbyt VY. Protecting the ingroup stereotype: Ingroup identification and the management of deviant ingroup members. British Journal of Social Psychology. 2002; 41(3), 365–385. doi: 10.1348/014466602760344269
60. Marques J, Abrams D, Serôdio RG. Being better by being right: subjective group dynamics and derogation of in-group deviants when generic norms are undermined. Journal of personality and social psychology, 2001; 81(3), 436. doi: 10.1037//0022-3514.81.3.436 11554645
61. Hogg MA. Social categorization, depersonalization, and group behavior. Blackwell handbook of social psychology: Group processes. 2001; pp. 56–85.
62. Dautenhahn K, Woods S, Kaouri C, Walters ML, Koay KL, Werry I. What is a robot companion—friend, assistant or butler? Proc 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.
63. Niewiadomski R, Demeure V, Pelachaud C. Warmth, Competence, Believability and Virtual Agents. IVA 2010: Intelligent Virtual Agents pp. 272–285.
64. Mehrabian A. Some determinants of affiliation and conformity. Psychological Reports. 1970; 27(1), 19–29. doi: 10.2466/pr0.1970.27.1.19
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy