Joint emulation of Earth System Model temperature-precipitation realizations with internal variability and space-time and cross-variable correlation: fldgen v2.0 software description
Autoři:
Abigail Snyder aff001; Robert Link aff001; Kalyn Dorheim aff001; Ben Kravitz aff002; Ben Bond-Lamberty aff001; Corinne Hartin aff001
Působiště autorů:
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, United States of America
aff001; Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN, United States of America
aff002; Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223542
Souhrn
Earth System Models (ESMs) are excellent tools for quantifying many aspects of future climate dynamics but are too computationally expensive to produce large collections of scenarios for downstream users of ESM data. In particular, many researchers focused on the impacts of climate change require large collections of ESM runs to rigorously study the impacts to both human and natural systems of low-frequency high-importance events, such as multi-year droughts. Climate model emulators provide an effective mechanism for filling this gap, reproducing many aspects of ESMs rapidly but with lower precision. The fldgen v1.0 R package quickly generates thousands of realizations of gridded temperature fields by randomizing the residuals of pattern scaling temperature output from any single ESM, retaining the spatial and temporal variance and covariance structures of the input data at a low computational cost. The fldgen v2.0 R package described here extends this capability to produce joint realizations of multiple variables, with a focus on temperature and precipitation in an open source software package available for community use (https://github.com/jgcri/fldgen). This substantially improves the fldgen package by removing the requirement that the ESM variables be normally distributed, and will enable researchers to quickly generate covarying temperature and precipitation data that are synthetic but faithful to the characteristics of the original ESM.
Klíčová slova:
Climate change – Climate modeling – Covariance – Meteorology – Normal distribution – Precipitation techniques – Statistical data – Earth systems
Zdroje
1. Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences. 2017;114(19):4881–4886. doi: 10.1073/pnas.1618082114
2. Trenberth KE, Fasullo JT, Shepherd TG. Attribution of climate extreme events. Nature Climate Change. 2015;5(8):725. doi: 10.1038/nclimate2657
3. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences. 2014;111(9):3268–3273. doi: 10.1073/pnas.1222463110
4. Calvin K, Patel P, Clarke L, Asrar G, Bond-Lamberty B, Cui RY, et al. GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Development. 2019;12(2):677–698. doi: 10.5194/gmd-12-677-2019
5. Cui RY, Calvin K, Clarke L, Hejazi M, Kim S, Kyle P, et al. Regional responses to future, demand-driven water scarcity. Environmental Research Letters. 2018;13(9):094006. doi: 10.1088/1748-9326/aad8f7
6. Tebaldi C, Knutti R. Evaluating the accuracy of climate change pattern emulation for low warming targets. Environmental Research Letters. 2018;13(5):055006. doi: 10.1088/1748-9326/aabef2
7. Link R, Snyder A, Lynch C, Hartin C, Kravitz B, Bond-Lamberty B. Fldgen v1.0: An Emulator with Internal Variability and Space-Time Correlation for Earth System Models. Geoscientific Model Development. 2018;.
8. Castruccio S, Stein M. Global space-time models for climate ensembles. The Annals of Applied Statistics. 2013;7(3):1593–1611. doi: 10.1214/13-AOAS656
9. Osborn TJ, Wallace CJ, Harris IC, Melvin TM. Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation. Climatic Change. 2015; p. 1–17.
10. Alexeeff SE, Nychka D, Sain SR, Tebaldi C. Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments. Climatic Change. 2016;
11. Pfahl S, O’Gorman PA, Fischer EM. Understanding the regional pattern of projected future changes in extreme precipitation. Nature Climate Change. 2017;7(6):423. doi: 10.1038/nclimate3287
12. Wakeel M, Chen B, Hayat T, Alsaedi A, Ahmad B. Energy consumption for water use cycles in different countries: A review. Applied Energy. 2016;178:868–885.
13. Zscheischler J, Seneviratne SI. Dependence of drivers affects risks associated with compound events. Science advances. 2017;3(6):e1700263. doi: 10.1126/sciadv.1700263 28782010
14. Hejazi MI, Edmonds J, Clarke L, Kyle P, Davies E, Chaturvedi V, et al. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrology and Earth System Sciences. 2014;18(8):2859–2883. doi: 10.5194/hess-18-2859-2014
15. Kilsby CG, Jones P, Burton A, Ford A, Fowler HJ, Harpham C, et al. A daily weather generator for use in climate change studies. Environmental Modelling & Software. 2007;22(12):1705–1719. doi: 10.1016/j.envsoft.2007.02.005
16. Champeney DC. Fourier Transforms and Their Physical Applications. New York: Academic Press; 1973.
17. Snyder A. Rank Correlation Coefficient verification supplement to’Joint emulation of Earth System Model temperature-precipitation realizations with internal variability and space-time and cross-variable correlation: fldgen v2.0 software description’; Published: August 20, 2019. Available from: https://doi.org/10.5281/zenodo.3372579.
18. Xu L, Stige LC, Chan KS, Zhou J, Yang J, Sang S, et al. Climate variation drives dengue dynamics. Proceedings of the National Academy of Sciences. 2017;114(1):113–118. doi: 10.1073/pnas.1618558114
19. Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society. 2012;93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy