Host-feeding patterns of Aedes (Aedimorphus) vexans arabiensis, a Rift Valley Fever virus vector in the Ferlo pastoral ecosystem of Senegal
Autoři:
Biram Biteye aff001; Assane Gueye Fall aff001; Momar Talla Seck aff001; Mamadou Ciss aff001; Mariame Diop aff001; Geoffrey Gimonneau aff002
Působiště autorů:
Institut Sénégalais de Recherches Agricoles/Laboratoire National de l’Elevage et de Recherches Vétérinaires BP 2057 Dakar-Hann, Sénégal
aff001; CIRAD, UMR INTERTRYP, Montpellier, France
aff002; Centre International de Recherche–Développement sur l’Elevage en zone subhumide, Bobo-Dioulasso 01, Burkina Faso
aff003; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0215194
Souhrn
Background
Host-vector contact is a key factor in vectorial capacity assessment and thus the transmission of mosquito-borne viruses such as Rift Valley Fever (RVF), an emerging zoonotic disease of interest in West Africa. The knowledge of the host-feeding patterns of vector species constitutes a key element in the assessment of their epidemiological importance in a given environment. The aim of this work was to identify the blood meal origins of the mosquito Aedes vexans arabiensis, the main vector of RVF virus in the Ferlo pastoral ecosystem of Senegal.
Methodology/principal findings
Engorged female mosquitoes were collected in Younouféré in the pastoral ecosystem in the Ferlo region during the 2014 rainy season. CO2-baited CDC light traps were set at six points for two consecutive nights every month from July to November. Domestic animals present around traps were identified and counted for each trapping session. Blood meal sources of engorged mosquitoes were identified using a vertebrate-specific multiplexed primer set based on cytochrome b. Blood meal sources were successfully identified for 319 out of 416 blood-fed females (76.68%), of which 163 (51.1%) were single meals, 146 (45.77%) mixed meals from two different hosts and 10 (3.13%) mixed meals from three different hosts. Aedes vexans arabiensis fed preferentially on mammals especially on horse compared to other hosts (FR = 46.83). Proportions of single and mixed meals showed significant temporal and spatial variations according to the availability of the hosts.
Conclusion
Aedes vexans arabiensis shows an opportunistic feeding behavior depending on the host availability. This species fed preferentially on mammals especially on horses (primary hosts) and ruminants (secondary hosts).
Klíčová slova:
Birds – Blood – Disease vectors – Goats – Horses – Sheep – Mosquitoes – Ponds
Zdroje
1. Linthicum KJ, Britch SC, Anyamba A. Rift Valley fever: An emerging mosquito-borne disease. Annu Rev Entomol. 2016;61:395–415. doi: 10.1146/annurev-ento-010715-023819 26982443
2. Jouan A, Le Guenno B, Digoutte JP, Philippe B, Riou O, Adam F. An RVF epidemic in southern Mauritania. Ann Inst Pasteur Viro. 1988;139:307–8.
3. Nabeth P, Kane Y, Abdalahi MO, Diallo M, Ndiaye K, Ba K, et al. Rift Valley fever outbreak, Mauritania, 1998: seroepidemiologic, virologic, entomologic, and zoologic investigations. Emerg Infec Dis. 2001;7(6):1052.
4. OIE. Rift Valley fever, Dorcas gazelle—Senegal: (SL) 1st report, OIE 20130924, 2013. http://www.promedmail.org, Accessed on 30/03/2015. 2013.
5. OIE. Rift Valley fever—Senegal: (DK) bovine. http://www.promedmail.org. Accessed on 30/03/2015. 2014. 2014.
6. Woods CW, Karpati AM, Grein T, McCarthy N, Gaturuku P, Muchiri E, et al. An outbreak of Rift Valley fever in northeastern Kenya, 1997–98. Emerg Infec Dis. 2002;8(2):138–44.
7. Guillaud M, Le Guenno B, Wilson M, Desoutter D, Gonzalez J, Digoutte J, editors. Prevalence of antibodies against Rift Valley fever virus in sheep and goats in Senegal. Annales de l'Institut Pasteur Virology; 1988.
8. Peyre M, Chevalier V, Abdo-Salem S, Velthuis A, Antoine-Moussiaux N, Thiry E, et al. A Systematic Scoping Study of the Socio-Economic Impact of Rift Valley Fever: Research Gaps and Needs. Zoonoses Public Hlth. 2013:1–17. doi: 10.1111/zph.12153 25256804
9. Wilson ML, Chapman LE, Hall DB, Dykstra EA, Ba K, Zeller HG, et al. Rift Valley fever in rural northern Senegal: human risk factors and potential vectors. American Journal of Tropical Medicine and Hygiene. 1994;50(6):663–75. doi: 10.4269/ajtmh.1994.50.663 7912905
10. Chevalier V, Lancelot R, Thiongane Y, Sall B, Diaité A, Mondet B. Rift Valley fever in small ruminants, Senegal, 2003. Emerg Infec Dis. 2005;11(11):1693–700.
11. Chevalier V, Thiongane Y, Lancelot R. Endemic transmission of Rift Valley fever in Senegal. Transbound Emerg Dis. 2009;56(9‐10):372–4. doi: 10.1111/j.1865-1682.2009.01083.x 19548898
12. Diallo D, Talla C, Ba Y, Dia I, Sall AA, Diallo M. Temporal distribution and spatial pattern of abundance of the Rift Valley fever and West Nile fever vectors in Barkedji, Senegal. J Vector Ecol. 2011;36(2):426–36. doi: 10.1111/j.1948-7134.2011.00184.x 22129415
13. Fontenille D, Traore´ -lamizana M, Diallo M, Thonnon J, Digoutte JP, Zeller HG. New Vectors of rift Valley Fever in West Africa. Emerg Infec Dis. 1998;4(2):289–93. doi: 10.3201/eid0402.980218 9621201
14. Sow A, Faye O, Ba Y, Diallo D, Fall G, Faye O, et al., editors. Widespread Rift Valley fever emergence in Senegal in 2013–2014. Open Forum Infect Dis ofw149 eCollection 2016 Sep; 2016: Oxford University Press. doi: 10.1093/ofid/ofw149 27704007
15. Diallo D, Ba Y, Dia I, Konaté L, Diallo M. Utilisation de boeufs traités aux insecticides dans la lutte contre les vecteurs des virus de la fièvre de la vallée du Rift et de la fièvre West Nile au Sénégal. Bull Soc Pathol Exot. 2008;101:410–7. 19192613
16. Poché RM, Burruss D, Polyakova L, Poché DM, Garlapati RB. Treatment of livestock with systemic insecticides for control of Anopheles arabiensis in western Kenya. Malar J. 2015;14(1):351.
17. Garros C, Gardes L, Allene X, Rakotoarivony I, Viennet E, Rossi S, et al. Adaptation of a species-specific multiplex PCR assay for the identification of blood meal source in Culicoides (Ceratopogonidae: Diptera): applications on Palaearctic biting midge species, vectors of Orbiviruses. Infect Genet Evol. 2011;11:1103–10. doi: 10.1016/j.meegid.2011.04.002 21511056
18. Lyimo IN, Ferguson HM. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol. 2009;25(4):189–96. doi: 10.1016/j.pt.2009.01.005 19269900
19. Ba Y, Diallo D, Dia I, Diallo M. Comportement trophique des vecteurs du virus de la fièvre de la vallée du Rift au Sénégal: implications dans l’épidémiologie de la maladie. Bull Soc Pathol Exot. 2006;99(4):283–9. 17111980
20. Fall AG, Diaïté A, Lancelot R, Tran A, Soti V, Etter E, et al. Feeding behaviour of potential vectors of West Nile virus in Senegal. Parasit Vectors. 2011;4(1).
21. Humair P-F, Douet V, Cadenas FM, Schouls LM, Van De Pol I, Gern L. Molecular identification of bloodmeal source in Ixodes ricinus ticks using 12S rDNA as a genetic marker. J Med Entomol. 2007;44(5):869–80. doi: 10.1603/0022-2585(2007)44[869:miobsi]2.0.co;2 17915521
22. Mukabana WR, Takken W, Knols BG. Analysis of arthropod bloodmeals using molecular genetic markers. Trends Parasitol. 2002;18(11):505–9. 12473367
23. Fall A, Diaite A, Etter E, Bouyer J, Ndiaye T, Konate L. The mosquito Aedes (Aedimorphus) vexans arabiensis as a probable vector bridging the West Nile virus between birds and horses in Barkedji (Ferlo, Senegal). Med Ved Entomol. 2012;26(1):106–11.
24. Rurangirwa F, Minja S, Musoke A, Nantulya V, Grootenhuis J, Moloo S. Production and evaluation of specific antisera against sera of various vertebrate species for identification of bloodmeals of Glossina morsitans centralis. Acta Trop. 1986;43(4):379–89. 2882665
25. Kent RJ, Norris DE. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome b. American Journal of Tropical Medicine and Hygiene. 2005;73(2):336–42. 16103600
26. Ngo KA, Kramer LD. Identification of Mosquito Bloodmeals Using Polymerase Chain Reaction (PCR) With Order-Specific Primers. J Med Entomol. 2003;40(2):215–22. doi: 10.1603/0022-2585-40.2.215 12693851
27. Bakhoum MT, Fall M, Seck M, Gardes L, Fall A, Diop M, et al. Foraging range of arthropods with veterinary interest: new insights for Afrotropical Culicoides biting midges (Diptera: Ceratopogonidae) using the ring method. Acta Trop. 2016;157:59–67. doi: 10.1016/j.actatropica.2016.01.023 26826391
28. Bataille M, Crainic K, Leterreux M, Durigon M, de Mazancourt P. Multiplex amplification of mitochondrial DNA for human and species identification in forensic evaluation. Forensic Sci Int. 1999;99(3):165–70. doi: 10.1016/s0379-0738(98)00185-6 10098254
29. Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci. 1989;86(16):6196–200. doi: 10.1073/pnas.86.16.6196 2762322
30. Matsunaga T, Chikuni K, Tanabe R, Muroya S, Shibata K, Yamada J, et al. A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Sci. 1999;51(2):143–8. doi: 10.1016/s0309-1740(98)00112-0 22061698
31. Tobolewski J, Kaliszewski MJ, Colwell RK, Oliver JH. Detection and identification of mammalian DNA from the gut of museum specimens of ticks. J Med Entomol. 1992;29(6):1049–51. doi: 10.1093/jmedent/29.6.1049 1460621
32. Hebert PD, Cywinska A, Ball SL. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences. 2003;270(1512):313–21.
33. Ndione JA, Besancenot JP, Lacaux JP, Sabatier P. Environnement et épidémiologie de la fièvre de la vallée du Rift (FVR) dans le bassin inférieur du fleuve Sénégal. Environ Risque Sante. 2003;2(3):176–82.
34. Ba Y, Sall A, Diallo D, Mondo M, Girault L, Dia I, et al. Re-emergence of Rift Valley fever virus in Barkedji (Senegal, West Africa) in 2002–2003: Identification of new vectors and epidemiological implications. J Am Mosquito Contr. 2012;28(3):170–8.
35. Diagne N, Fontenille D, Konate L, Faye O, Lamizana M, Legros F, et al. Anopheles of Senegal. Bull Soc Pathol Exot. 1994;87:267–77. 7866049
36. Edwards FW. Mosquitoes of the Ethiopian Region. III.-Culicine adults and pupae. Mosquitoes of the Ethiopian Region III-Culicine Adults and Pupae. 1941.
37. Brunhers J, Rhaim A, Geoffroy B, Angel G, Hervy JP. Les culicidae de l'Afrique Méditerranéenne: Un programme d'identification et d'enseignement. In: IDR, editor.: IRD; 1999.
38. Hervy JP, Le Goff G, Geoffroy B, Hervé JP, Manga L, Brunhers J. Les Anophèles de la région afro-tropicale: un logiciel d'identification et d'enseignement. 1998.
39. Schaffner F, Angel G, Geoffroy B, Hervy JP, Rhaiem A, Brunhers J. Les moutiques d'Europe: Programme d'enseignement et d'identification. IRD éditions2001.
40. Bakhoum MT, Fall M, Fall AG, Bellis GA, Gottlieb Y, Labuschagne K, et al. First Record of Culicoides oxystoma Kieffer and Diversity of Species within the Schultzei Group of Culicoides Latreille (Diptera: Ceratopogonidae) Biting Midges in Senegal. Plos One. 2013;8(12):8.
41. Solano P, Duvallet G, Dumas V, Cuisance D, Cuny G. Microsatellite markers for genetic population studies in Glossina palpalis (Diptera: Glossinidae). Acta Trop. 1997;65:175–80. doi: 10.1016/s0001-706x(97)00663-3 9177579
42. Kawada H, Dida GO, Sonye G, Njenga SM, Mwandawiro C, Minakawa N. Reconsideration of Anopheles rivulorum as a vector of Plasmodium falciparum in Western Kenya: some evidence from biting time, blood preference, sporozoite positive rate, and pyrethroid resistance. Parasit Vectors. 2012;5(230):8.
43. Pitzer JB, Kaufman PE, Tenbroeck SH, Maruniak JE. Host Blood Meal Identification by Multiplex Polymerase Chain Reaction for Dispersal Evidence of Stable Flies (Diptera: Muscidae) Between Livestock Facilities. J Med Entomol 2011;48(1):53–60. doi: 10.1603/me10123 21337948
44. Beier JC, Zimmerman JH, Kenawy MA, Said SE, Abbassy MM. Host-feeding patterns of the mosquito community (Diptera: Culicidae) in two Faiyum Governorate villages, Egypt. J Med Entomol. 1987;24(1):28–34. doi: 10.1093/jmedent/24.1.28 3820237
45. Hess A, Hayes RO, Tempelis C. The use of the forage ratio technique in mosquito host preference studies. Mosq News. 1968;28(3):386–9.
46. Stephenson EB, Murphy AK, Jansen CC, Peel AJ, McCallum H. Interpreting mosquito feeding patterns in Australia through an ecological lens: an analysis of blood meal studies. Parasit Vectors. 2019;12(1):156. doi: 10.1186/s13071-019-3405-z 30944025
47. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. 2017.
48. de Carvalho GC, dos Santos Malafronte R, Miti Izumisawa C, Souza Teixeira R, Natal L, Marrelli MT. Blood meal sources of mosquitoes captured in municipal parks in São Paulo, Brazil. J Vector Ecol. 2014;39(1):146–52. doi: 10.1111/j.1948-7134.2014.12081.x 24820567
49. Kent RJ, Thuma PE, Mharakurwa S, Norris DE. Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in southern Zambia. Am J Trop Med Hyg. 2007;76(2):267–74. 17297034
50. Lujan D, Greenberg J, Hung A, Dimenna M, Hofkin B. Evaluation of Seasonal Feeding Patterns of West Nile Virus Vectors in Bernalillo County, New Mexico, United States: Implications for Disease Transmission. J Med Entomol. 2014;51(1):264–8. doi: 10.1603/me13163 24605477
51. Abbasi I, Cunio R, Warburg A. Identification of blood meals imbibed by phlebotomine sand flies using cytochrome b PCR and reverse line blotting. Vector Borne Zoonotic Dis. 2009;9(1):79–86. doi: 10.1089/vbz.2008.0064 18973440
52. Biteye B, Fall AG, Ciss M, Seck MT, Apolloni A, Fall M, et al. Ecological distribution and population dynamics of Rift Valley fever virus mosquito vectors (Diptera, Culicidae) in Senegal. Parasit Vectors. 2018;11(27):1–6. doi: 10.1186/s13071-017-2591-9 29316967
53. Molaei G, Andreadis TG. Identification of avian-and mammalian-derived bloodmeals in Aedes vexans and Culiseta melanura (Diptera: Culicidae) and its implication for West Nile virus transmission in Connecticut, USA. J Med Entomol. 2006;43(5):1088–93. doi: 10.1603/0022-2585(2006)43[1088:IOAAMB]2.0.CO;2 17017250
54. Gingrich JB, Williams GM. Host-feeding patterns of suspected West Nile virus mosquito vectors in Delaware, 2001–2002. J Am Mosquito Contr. 2005;21(2):194–200.
55. Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K. Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. Journal of Forensic Science. 1994;39(2):362–72.
56. Detinova TS. Méthodes à appliquer pour classer par groupes d'âge les Diptères présentant une importace médicale, notamment certains vecteurs du paludisme. OMS, Sér Monogr. 1963.;47.
57. Reeves LE, Gillett-Kaufman JL, Kawahara AY, Kaufman PE. Barcoding blood meals: New vertebrate-specific primer sets for assigning taxonomic identities to host DNA from mosquito blood meals. PLoS Negl Trop Dis. 2018;12(8):e0006767. doi: 10.1371/journal.pntd.0006767 30161128
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy