#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Transforming growth factor beta 1 induces methylation changes in lung fibroblasts


Autoři: Miguel Negreros aff001;  James S. Hagood aff002;  Celia R. Espinoza aff002;  Yalbi I. Balderas-Martínez aff004;  Moisés Selman aff004;  Annie Pardo aff001
Působiště autorů: Facultad de Ciencias Universidad Nacional Autónoma de México, Mexico City, Mexico aff001;  Department of Pediatrics, Division of Respiratory Medicine, University of California-San Diego, La Jolla, California, United States of America aff002;  Department of Pediatrics, Pulmonology Division, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America aff003;  Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico aff004;  Cátedra CONACyT-INER, Mexico City, Mexico aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223512

Souhrn

Idiopathic pulmonary fibrosis is a complex disease of unknown etiology. Environmental factors can affect disease susceptibility via epigenetic effects. Few studies explore global DNA methylation in lung fibroblasts, but none have focused on transforming growth factor beta-1 (TGF-β1) as a potential modifier of the DNA methylome. Here we analyzed changes in methylation and gene transcription in normal and IPF fibroblasts following TGF-β1 treatment. We analyzed the effects of TGF-β1 on primary fibroblasts derived from normal or IPF lungs treated for 24 hours and 5 days using the Illumina 450k Human Methylation array and the Prime View Human Gene Expression Array. TGF-β1 induced an increased number of gene expression changes after short term treatment in normal fibroblasts, whereas greater methylation changes were observed following long term stimulation mainly in IPF fibroblasts. DNA methyltransferase 3 alpha (DMNT3a) and tet methylcytosine dioxygenase 3 (TET3) were upregulated after 5-days TGF-β1 treatment in both cell types, whereas DNMT3a was upregulated after 24h only in IPF fibroblasts. Our findings demonstrate that TGF-β1 induced the upregulation of DNMT3a and TET3 expression and profound changes in the DNA methylation pattern of fibroblasts, mainly in those derived from IPF lungs.

Klíčová slova:

DNA methylation – Fibroblasts – Fibrosis – Gene expression – Gene regulation – Pulmonary fibrosis – TGF-beta signaling cascade – Cultured fibroblasts


Zdroje

1. King TE Jr., Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet. 2011;378(9807):1949–61. doi: 10.1016/S0140-6736(11)60052-4 21719092

2. Pardo A, Selman M. Lung Fibroblasts, Aging, and Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc. 2016;13(Supplement_5):S417–S21. doi: 10.1513/AnnalsATS.201605-341AW 28005427

3. Datta A, Scotton CJ, Chambers RC. Novel therapeutic approaches for pulmonary fibrosis. Br J Pharmacol. 2011;163(1):141–72. doi: 10.1111/j.1476-5381.2011.01247.x 21265830

4. Agostini C, Gurrieri C. Chemokine/cytokine cocktail in idiopathic pulmonary fibrosis. Proc Am Thorac Soc. 2006;3(4):357–63. doi: 10.1513/pats.200601-010TK 16738201

5. Fernandez IE, Eickelberg O. The impact of TGF-beta on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc. 2012;9(3):111–6. Epub 2012/07/18. doi: 10.1513/pats.201203-023AW 22802283

6. Eickelberg O, Kohler E, Reichenberger F, Bertschin S, Woodtli T, Erne P, et al. Extracellular matrix deposition by primary human lung fibroblasts in response to TGF-beta1 and TGF-beta3. Am J Physiol. 1999;276(5 Pt 1):L814–24. doi: 10.1152/ajplung.1999.276.5.L814 10330038

7. Horowitz JC, Rogers DS, Sharma V, Vittal R, White ES, Cui Z, et al. Combinatorial activation of FAK and AKT by transforming growth factor-beta1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal. 2007;19(4):761–71. doi: 10.1016/j.cellsig.2006.10.001 17113264

8. Scotton CJ, Chambers RC. Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest. 2007;132(4):1311–21. doi: 10.1378/chest.06-2568 17934117

9. Chambers RC, Leoni P, Kaminski N, Laurent GJ, Heller RA. Global expression profiling of fibroblast responses to transforming growth factor-beta1 reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching. Am J Pathol. 2003;162(2):533–46. doi: 10.1016/s0002-9440(10)63847-3 12547711

10. Renzoni EA, Abraham DJ, Howat S, Shi-Wen X, Sestini P, Bou-Gharios G, et al. Gene expression profiling reveals novel TGFbeta targets in adult lung fibroblasts. Respir Res. 2004;5:24. doi: 10.1186/1465-9921-5-24 15571627

11. Hagood JS. Beyond the genome: epigenetic mechanisms in lung remodeling. Physiology (Bethesda). 2014;29(3):177–85. doi: 10.1152/physiol.00048.2013 24789982

12. Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol. 2015;16(10):593–610. doi: 10.1038/nrm4048 26373265

13. Sanders YY, Ambalavanan N, Halloran B, Zhang X, Liu H, Crossman DK, et al. Altered DNA methylation profile in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;186(6):525–35. doi: 10.1164/rccm.201201-0077OC 22700861

14. Rabinovich EI, Kapetanaki MG, Steinfeld I, Gibson KF, Pandit KV, Yu G, et al. Global methylation patterns in idiopathic pulmonary fibrosis. PLoS One. 2012;7(4):e33770. doi: 10.1371/journal.pone.0033770 22506007

15. Neveu WA, Mills ST, Staitieh BS, Sueblinvong V. TGF-beta1 epigenetically modifies Thy-1 expression in primary lung fibroblasts. Am J Physiol Cell Physiol. 2015;309(9):C616–26. doi: 10.1152/ajpcell.00086.2015 26333597

16. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824. doi: 10.1164/rccm.2009-040GL 21471066

17. Raghu G, Rochwerg B, Zhang Y, Garcia CA, Azuma A, Behr J, et al. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am J Respir Crit Care Med. 2015;192(2):e3–19. doi: 10.1164/rccm.201506-1063ST 26177183

18. Bechtel W, McGoohan S, Zeisberg EM, Muller GA, Kalbacher H, Salant DJ, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 2010;16(5):544–50. Epub 2010/04/27. doi: 10.1038/nm.2135 20418885

19. Team RC. R: A language and environment for statistical computing. 2014. Available from: https://www.R-project.org/

20. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12(2):115–21. doi: 10.1038/nmeth.3252 25633503

21. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. Epub 2015/01/22. doi: 10.1093/nar/gkv007 25605792

22. Maksimovic J, Phipson B, Oshlack A. A cross-package Bioconductor workflow for analysing methylation array data. F1000Res. 2016;5:1281. doi: 10.12688/f1000research.8839.3 27347385

23. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9. doi: 10.1093/bioinformatics/btu049 24478339

24. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8(2):203–9. doi: 10.4161/epi.23470 23314698

25. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98(4):288–95. doi: 10.1016/j.ygeno.2011.07.007 21839163

26. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7. doi: 10.1093/nar/gkw377 27141961

27. Gimenez A, Duch P, Puig M, Gabasa M, Xaubet A, Alcaraz J. Dysregulated Collagen Homeostasis by Matrix Stiffening and TGF-beta1 in Fibroblasts from Idiopathic Pulmonary Fibrosis Patients: Role of FAK/Akt. Int J Mol Sci. 2017;18(11). doi: 10.3390/ijms18112431 29144435

28. Oruqaj G, Karnati S, Vijayan V, Kotarkonda LK, Boateng E, Zhang W, et al. Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-beta signaling. Proc Natl Acad Sci U S A. 2015;112(16):E2048–57. Epub 2015/04/08. doi: 10.1073/pnas.1415111112 25848047

29. White ES, Sagana RL, Booth AJ, Yan M, Cornett AM, Bloomheart CA, et al. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway. Exp Cell Res. 2010;316(16):2644–53. Epub 2010/07/10. doi: 10.1016/j.yexcr.2010.06.028 20615404

30. Sanders YY, Pardo A, Selman M, Nuovo GJ, Tollefsbol TO, Siegal GP, et al. Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2008;39(5):610–8. doi: 10.1165/rcmb.2007-0322OC 18556592

31. Ramirez G, Hagood JS, Sanders Y, Ramirez R, Becerril C, Segura L, et al. Absence of Thy-1 results in TGF-beta induced MMP-9 expression and confers a profibrotic phenotype to human lung fibroblasts. Lab Invest. 2011;91(8):1206–18. doi: 10.1038/labinvest.2011.80 21577212

32. Hagood JS, Prabhakaran P, Kumbla P, Salazar L, MacEwen MW, Barker TH, et al. Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am J Pathol. 2005;167(2):365–79. doi: 10.1016/S0002-9440(10)62982-3 16049324

33. Illingworth RS, Bird AP. CpG islands—'a rough guide'. FEBS Lett. 2009;583(11):1713–20. Epub 2009/04/21. doi: 10.1016/j.febslet.2009.04.012 19376112

34. Alvarez D, Cardenes N, Sellares J, Bueno M, Corey C, Hanumanthu VS, et al. IPF lung fibroblasts have a senescent phenotype. Am J Physiol Lung Cell Mol Physiol. 2017;313(6):L1164–L73. Epub 2017/09/02. doi: 10.1152/ajplung.00220.2017 28860144

35. Yang IV, Pedersen BS, Rabinovich E, Hennessy CE, Davidson EJ, Murphy E, et al. Relationship of DNA methylation and gene expression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2014;190(11):1263–72. Epub 2014/10/22. doi: 10.1164/rccm.201408-1452OC 25333685

36. Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012;44(11):1236–42. Epub 2012/10/16. doi: 10.1038/ng.2443 23064414

37. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26(4):577–90. Epub 2014/09/30. doi: 10.1016/j.ccr.2014.07.028 25263941

38. Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013;23(3):555–67. Epub 2013/01/18. doi: 10.1101/gr.147942.112 23325432

39. Yong WS, Hsu FM, Chen PY. Profiling genome-wide DNA methylation. Epigenetics Chromatin. 2016;9:26. Epub 2016/07/01. doi: 10.1186/s13072-016-0075-3 27358654

40. Huang SK, Scruggs AM, McEachin RC, White ES, Peters-Golden M. Lung fibroblasts from patients with idiopathic pulmonary fibrosis exhibit genome-wide differences in DNA methylation compared to fibroblasts from nonfibrotic lung. PLoS One. 2014;9(9):e107055. Epub 2014/09/13. doi: 10.1371/journal.pone.0107055 25215577

41. Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004;6(8):731–40. Epub 2004/07/06. doi: 10.1038/ncb1151 15235609

42. Skinner MK, Guerrero-Bosagna C. Role of CpG deserts in the epigenetic transgenerational inheritance of differential DNA methylation regions. BMC Genomics. 2014;15:692. Epub 2014/08/22. doi: 10.1186/1471-2164-15-692 25142051

43. Besnard V, Wert SE, Stahlman MT, Postle AD, Xu Y, Ikegami M, et al. Deletion of Scap in alveolar type II cells influences lung lipid homeostasis and identifies a compensatory role for pulmonary lipofibroblasts. J Biol Chem. 2009;284(6):4018–30. Epub 2008/12/17. doi: 10.1074/jbc.M805388200 19074148

44. Plantier L, Besnard V, Xu Y, Ikegami M, Wert SE, Hunt AN, et al. Activation of sterol-response element-binding proteins (SREBP) in alveolar type II cells enhances lipogenesis causing pulmonary lipotoxicity. J Biol Chem. 2012;287(13):10099–114. Epub 2012/01/24. doi: 10.1074/jbc.M111.303669 22267724

45. Zhang W, Niu M, Yan K, Zhai X, Zhou Q, Zhang L, et al. Stat3 pathway correlates with the roles of leptin in mouse liver fibrosis and sterol regulatory element binding protein-1c expression of rat hepatic stellate cells. Int J Biochem Cell Biol. 2013;45(3):736–44. Epub 2013/01/09. doi: 10.1016/j.biocel.2012.12.019 23295202

46. Wang TN, Chen X, Li R, Gao B, Mohammed-Ali Z, Lu C, et al. SREBP-1 Mediates Angiotensin II-Induced TGF-beta1 Upregulation and Glomerular Fibrosis. J Am Soc Nephrol. 2015;26(8):1839–54. Epub 2014/11/16. doi: 10.1681/ASN.2013121332 25398788

47. Mustafa M, Wang TN, Chen X, Gao B, Krepinsky JC. SREBP inhibition ameliorates renal injury after unilateral ureteral obstruction. Am J Physiol Renal Physiol. 2016;311(3):F614–25. Epub 2016/07/08. doi: 10.1152/ajprenal.00140.2016 27385736

48. Wilcox RG, James PD, Toghill PJ. Endomyocardial fibrosis associated with daunorubicin therapy. Br Heart J. 1976;38(8):860–3. Epub 1976/08/01. doi: 10.1136/hrt.38.8.860 1067858

49. Vural E, Yilmaz M, Ilbay K, Ilbay G. Prevention of Epidural Fibrosis in Rats by Local Administration of Mitomycin C or Daunorubicin. Turk Neurosurg. 2016;26(2):291–6. Epub 2016/03/10. doi: 10.5137/1019-5149.JTN.7705-12.1 26956828


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#