Mechanical effects of MitraClip on leaflet stress and myocardial strain in functional mitral regurgitation – A finite element modeling study
Autoři:
Yue Zhang aff001; Vicky Y. Wang aff001; Ashley E. Morgan aff002; Jiwon Kim aff003; Mark D. Handschumacher aff004; Chaya S. Moskowitz aff005; Robert A. Levine aff004; Liang Ge aff001; Julius M. Guccione aff001; Jonathan W. Weinsaft aff003; Mark B. Ratcliffe aff001
Působiště autorů:
San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States of America
aff001; Department of Surgery, University of California, San Francisco, CA, United States of America
aff002; Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
aff003; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
aff004; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
aff005
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223472
Souhrn
Purpose
MitraClip is the sole percutaneous device approved for functional mitral regurgitation (MR; FMR) but MR recurs in over one third of patients. As device-induced mechanical effects are a potential cause for MR recurrence, we tested the hypothesis that MitraClip increases leaflet stress and procedure-related strain in sub-valvular left ventricular (LV) myocardium in FMR associated with coronary disease (FMR-CAD).
Methods
Simulations were performed using finite element models of the LV + mitral valve based on MRI of 5 sheep with FMR-CAD. Models were modified to have a 20% increase in LV volume (↑LV_VOLUME) and MitraClip was simulated with contracting beam elements (virtual sutures) placed between nodes in the center edge of the anterior (AL) and posterior (PL) mitral leaflets. Effects of MitraClip on leaflet stress in the peri-MitraClip region of AL and PL, septo-lateral annular diameter (SLAD), and procedure-related radial strain (Err) in the sub-valvular myocardium were calculated.
Results
MitraClip increased peri-MitraClip leaflet stress at end-diastole (ED) by 22.3±7.1 kPa (p<0.0001) in AL and 14.8±1.2 kPa (p<0.0001) in PL. MitraClip decreased SLAD by 6.1±2.2 mm (p<0.0001) and increased Err in the sub-valvular lateral LV myocardium at ED by 0.09±0.04 (p<0.0001)). Furthermore, MitraClip in ↑LV_VOLUME was associated with persistent effects at ED but also at end-systole where peri-MitraClip leaflet stress was increased in AL by 31.9±14.4 kPa (p = 0.0268) and in PL by 22.5±23.7 kPa (p = 0.0101).
Conclusions
MitraClip for FMR-CAD increases mitral leaflet stress and radial strain in LV sub-valvular myocardium. Mechanical effects of MitraClip are augmented by LV enlargement.
Klíčová slova:
Magnetic resonance imaging – Mechanical stress – Myocardial infarction – Sheep – Myocardium – Systole – Endocardium – Diastole
Zdroje
1. Gorman RC, Gorman JH 3rd, Edmunds LH Jr. Ischemic mitral regurgitation in cardiac surgery in the adult. In: Cohn LH, Edmunds LH Jr., editors. Cardiac Surgery in the adult. New York: McGraw-Hill; 2003. p. 1751–70.
2. Hickey MS, Smith LR, Muhlbaier LH, Harrell FE Jr., Reves JG, Hinohara T, et al. Current prognosis of ischemic mitral regurgitation. Implications for future management. Circulation. 1988;78(3 Pt 2):I51–9. 2970346.
3. Abbott receives FDA approval for expanded indication for MitraClip™ device 2019. Available from: https://abbott.mediaroom.com/2019-03-14-Abbott-Receives-FDA-Approval-for-Expanded-Indication-for-MitraClip-TM-Device.
4. MitraClip Clip Delivery System: Abbott Vascular; 2016. Available from: http://www.abbottvascular.com/docs/ifu/structural_heart/eIFU_MitraClip.pdf.
5. Obadia JF, Messika-Zeitoun D, Leurent G, Iung B, Bonnet G, Piriou N, et al. Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation. N Engl J Med. 2018. Epub 2018/08/28. doi: 10.1056/NEJMoa1805374 30145927.
6. Stone GW, Lindenfeld J, Abraham WT, Kar S, Lim DS, Mishell JM, et al. Transcatheter Mitral-Valve Repair in Patients with Heart Failure. N Engl J Med. 2018. Epub 2018/10/04. doi: 10.1056/NEJMoa1806640 30280640.
7. Franzen O, van der Heyden J, Baldus S, Schluter M, Schillinger W, Butter C, et al. MitraClip(R) therapy in patients with end-stage systolic heart failure. European journal of heart failure. 2011;13(5):569–76. doi: 10.1093/eurjhf/hfr029 21471146.
8. Maisano F, Franzen O, Baldus S, Schafer U, Hausleiter J, Butter C, et al. Percutaneous mitral valve interventions in the real world: early and 1-year results from the ACCESS-EU, a prospective, multicenter, nonrandomized post-approval study of the MitraClip therapy in Europe. Journal of the American College of Cardiology. 2013;62(12):1052–61. doi: 10.1016/j.jacc.2013.02.094 23747789.
9. Taramasso M, Denti P, Latib A, Guidotti A, Buzzatti N, Pozzoli A, et al. Clinical and anatomical predictors of MitraClip therapy failure for functional mitral regurgitation: single central clip strategy in asymmetric tethering. Int J Cardiol. 2015;186:286–8. doi: 10.1016/j.ijcard.2015.03.236 25828137.
10. Votta E, Maisano F, Soncini M, Redaelli A, Montevecchi FM, Alfieri O. 3-D computational analysis of the stress distribution on the leaflets after edge-to-edge repair of mitral regurgitation. J Heart Valve Dis. 2002;11(6):810–22. 12479282.
11. Sturla F, Vismara R, Jaworek M, Votta E, Romitelli P, Pappalardo OA, et al. In vitro and in silico approaches to quantify the effects of the Mitraclip. J Biomech. 2017;50:83–92. Epub 2016/11/10. doi: 10.1016/j.jbiomech.2016.11.013 27863743.
12. Morgan AE, Wozniak CJ, Gulati S, Ge L, Grossi EA, Weinsaft JW, et al. Association of Uneven MitraClip Application and Leaflet Stress in a Finite Element Model. JAMA Surg. 2017;152(1):111–4. doi: 10.1001/jamasurg.2016.3360 27706490.
13. Pantoja JL, Ge L, Zhang Z, Morrel WG, Guccione JM, Grossi EA, et al. Posterior papillary muscle anchoring affects remote myofiber stress and pump function: finite element analysis. Ann Thorac Surg. 2014;98(4):1355–62. Epub 2014/08/15. doi: 10.1016/j.athoracsur.2014.04.077 25130075.
14. Pantoja JL, Morgan AE, Grossi EA, Jensen MO, Weinsaft JW, Levine RA, et al. Undersized Mitral Annuloplasty Increases Strain in the Proximal Lateral Left Ventricular Wall. Ann Thorac Surg. 2017;103(3):820–7. doi: 10.1016/j.athoracsur.2016.07.021 27720201; PubMed Central PMCID: PMC5439528.
15. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press (US); 2011. doi: 10.1258/la.2010.010031
16. Soleimani M, Khazalpour M, Cheng G, Zhang Z, Acevedo-Bolton G, Saloner DA, et al. Moderate mitral regurgitation accelerates left ventricular remodeling after posterolateral myocardial infarction. Ann Thorac Surg. 2011;92(5):1614–20. Epub 2011/09/29. doi: 10.1016/j.athoracsur.2011.05.117 21945222; PubMed Central PMCID: PMC3253877.
17. Wenk JF, Zhang Z, Cheng G, Malhotra D, Acevedo-Bolton G, Burger M, et al. First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann Thorac Surg. 2010;89(5):1546–53. Epub 2010/04/27. doi: 10.1016/j.athoracsur.2010.02.036 20417775; PubMed Central PMCID: PMC2887313.
18. Guccione JM, McCulloch AD, Waldman LK. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng. 1991;113(1):42–55. Epub 1991/02/01. doi: 10.1115/1.2894084 2020175.
19. Guccione JM, Waldman LK, McCulloch AD. Mechanics of active contraction in cardiac muscle: Part II—Cylindrical models of the systolic left ventricle. J Biomech Eng. 1993;115(1):82–90. Epub 1993/02/01. doi: 10.1115/1.2895474 8445902.
20. Ge L, Wu Y, Soleimani M, Khazalpour M, Takaba K, Tartibi M, et al. Moderate Ischemic Mitral Regurgitation After Posterolateral Myocardial Infarction in Sheep Alters Left Ventricular Shear but Not Normal Strain in the Infarct and Infarct Borderzone. Ann Thorac Surg. 2016;101(5):1691–9. doi: 10.1016/j.athoracsur.2015.10.083 26857634; PubMed Central PMCID: PMC4842099.
21. Sun K, Stander N, Jhun CS, Zhang Z, Suzuki T, Wang GY, et al. A computationally efficient formal optimization of regional myocardial contractility in a sheep with left ventricular aneurysm. J Biomech Eng. 2009;131(11):111001. Epub 2009/12/18. doi: 10.1115/1.3148464 20016753; PubMed Central PMCID: PMC2793686.
22. Wenk JF, Ratcliffe MB, Guccione JM. Finite element modeling of mitral leaflet tissue using a layered shell approximation. Med Biol Eng Comput. 2012. Epub 2012/09/14. doi: 10.1007/s11517-012-0952-2 22971896.
23. Herrmann HC, Kar S, Siegel R, Fail P, Loghin C, Lim S, et al. Effect of percutaneous mitral repair with the MitraClip device on mitral valve area and gradient. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. 2009;4(4):437–42. Epub 2009/03/17. 19284064.
24. Verbraecken J, Van de Heyning P, De Backer W, Van Gaal L. Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism. 2006;55(4):515–24. doi: 10.1016/j.metabol.2005.11.004 16546483.
25. Wong VM, Wenk JF, Zhang Z, Cheng G, Acevedo-Bolton G, Burger M, et al. The effect of mitral annuloplasty shape in ischemic mitral regurgitation: a finite element simulation. Ann Thorac Surg. 2012;93(3):776–82. Epub 2012/01/17. doi: 10.1016/j.athoracsur.2011.08.080 22245588; PubMed Central PMCID: PMC3432639.
26. Neuss M, Schau T, Isotani A, Pilz M, Schopp M, Butter C. Elevated Mitral Valve Pressure Gradient After MitraClip Implantation Deteriorates Long-Term Outcome in Patients With Severe Mitral Regurgitation and Severe Heart Failure. JACC Cardiovasc Interv. 2017;10(9):931–9. doi: 10.1016/j.jcin.2016.12.280 28473116.
27. Rego BV, Wells SM, Lee CH, Sacks MS. Mitral valve leaflet remodelling during pregnancy: insights into cell-mediated recovery of tissue homeostasis. J R Soc Interface. 2016;13(125). doi: 10.1098/rsif.2016.0709 27928033; PubMed Central PMCID: PMC5221526.
28. Dal-Bianco JP, Aikawa E, Bischoff J, Guerrero JL, Handschumacher MD, Sullivan S, et al. Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation. 2009;120(4):334–42. doi: 10.1161/CIRCULATIONAHA.108.846782 19597052; PubMed Central PMCID: PMC2752046.
29. Beaudoin J, Dal-Bianco JP, Aikawa E, Bischoff J, Guerrero JL, Sullivan S, et al. Mitral Leaflet Changes Following Myocardial Infarction: Clinical Evidence for Maladaptive Valvular Remodeling. Circ Cardiovasc Imaging. 2017;10(11). doi: 10.1161/CIRCIMAGING.117.006512 29042413; PubMed Central PMCID: PMC5683411.
30. Debonnaire P, Al Amri I, Leong DP, Joyce E, Katsanos S, Kamperidis V, et al. Leaflet remodelling in functional mitral valve regurgitation: characteristics, determinants, and relation to regurgitation severity. Eur Heart J Cardiovasc Imaging. 2015;16(3):290–9. doi: 10.1093/ehjci/jeu216 25368208.
31. Ladich E, Michaels MB, Jones RM, McDermott E, Coleman L, Komtebedde J, et al. Pathological healing response of explanted MitraClip devices. Circulation. 2011;123(13):1418–27. doi: 10.1161/CIRCULATIONAHA.110.978130 21422390.
32. Mazur P, Mok S, Krishnaswamy A, Kapadia S, Navia JL. Mitral valve surgery following failed MitraClip implantation. J Card Surg. 2017;32(1):14–25. doi: 10.1111/jocs.12877 27910136.
33. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56(1):56–64. doi: 10.1172/JCI108079 124746.
34. D'Elia N, D'Hooge J, Marwick TH. Association Between Myocardial Mechanics and Ischemic LV Remodeling. JACC Cardiovasc Imaging. 2015;8(12):1430–43. doi: 10.1016/j.jcmg.2015.10.005 26699112.
35. Mansour H, de Tombe PP, Samarel AM, Russell B. Restoration of resting sarcomere length after uniaxial static strain is regulated by protein kinase Cepsilon and focal adhesion kinase. Circ Res. 2004;94(5):642–9. Epub 2004/02/14. doi: 10.1161/01.RES.0000121101.32286.C8 14963000.
36. Herbrand T, Eschenhagen S, Zeus T, Kehmeier E, Hellhammer K, Veulemans V, et al. Acute reverse annular remodeling during MitraClip((R)) therapy predicts improved clinical outcome in heart failure patients: a 3D echocardiography study. Eur J Med Res. 2017;22(1):33. Epub 2017/09/22. doi: 10.1186/s40001-017-0273-x 28931437; PubMed Central PMCID: PMC5607606.
37. Hidalgo F, Mesa D, Ruiz M, Delgado M, Rodriguez S, Pardo L, et al. Effects of Mitral Annulus Remodeling Following MitraClip Procedure on Reduction of Functional Mitral Regurgitation. Revista espanola de cardiologia. 2016. doi: 10.1016/j.rec.2016.04.003 27212447.
38. Schmidt FP, von Bardeleben RS, Nikolai P, Jabs A, Wunderlich N, Munzel T, et al. Immediate effect of the MitraClip procedure on mitral ring geometry in primary and secondary mitral regurgitation. Eur Heart J Cardiovasc Imaging. 2013;14(9):851–7. doi: 10.1093/ehjci/jes293 23288891.
39. Lurz P, Serpytis R, Blazek S, Seeburger J, Mangner N, Noack T, et al. Assessment of acute changes in ventricular volumes, function, and strain after interventional edge-to-edge repair of mitral regurgitation using cardiac magnetic resonance imaging. Eur Heart J Cardiovasc Imaging. 2015;16(12):1399–404. Epub 2015/05/07. doi: 10.1093/ehjci/jev115 25944047.
40. Hung J, Guerrero JL, Handschumacher MD, Supple G, Sullivan S, Levine RA. Reverse ventricular remodeling reduces ischemic mitral regurgitation: echo-guided device application in the beating heart. Circulation. 2002;106(20):2594–600. doi: 10.1161/01.cir.0000038363.83133.6d 12427657.
41. Liel-Cohen N, Guerrero JL, Otsuji Y, Handschumacher MD, Rudski LG, Hunziker PR, et al. Design of a new surgical approach for ventricular remodeling to relieve ischemic mitral regurgitation: insights from 3-dimensional echocardiography. Circulation. 2000;101(23):2756–63. doi: 10.1161/01.cir.101.23.2756 10851215.
42. Rabbah JP, Siefert AW, Spinner EM, Saikrishnan N, Yoganathan AP. Peak mechanical loads induced in the in vitro edge-to-edge repair of posterior leaflet flail. Ann Thorac Surg. 2012;94(5):1446–53. doi: 10.1016/j.athoracsur.2012.05.024 22748643.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy