#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Framework for rational donor selection in fecal microbiota transplant clinical trials


Autoři: Claire Duvallet aff001;  Caroline Zellmer aff003;  Pratik Panchal aff003;  Shrish Budree aff003;  Majdi Osman aff003;  Eric J. Alm aff001
Působiště autorů: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America aff001;  Center for Microbiome Informatics and Therapeutics, Cambridge, MA, United States of America aff002;  OpenBiome, Cambridge, MA, United States of America aff003;  Harvard Medical School, Boston, MA, United States of America aff004;  The Broad Institute of MIT and Harvard, Cambridge, MA, United States of America aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222881

Souhrn

Early clinical successes are driving enthusiasm for fecal microbiota transplantation (FMT), the transfer of healthy gut bacteria through whole stool, as emerging research is linking the microbiome to many different diseases. However, preliminary trials have yielded mixed results and suggest that heterogeneity in donor stool may play a role in patient response. Thus, clinical trials may fail because an ineffective donor was chosen rather than because FMT is not appropriate for the indication. Here, we describe a conceptual framework to guide rational donor selection to increase the likelihood that FMT clinical trials will succeed. We argue that the mechanism by which the microbiome is hypothesized to be associated with a given indication should inform how healthy donors are selected for FMT trials, categorizing these mechanisms into four disease models and presenting associated donor selection strategies. We next walk through examples based on previously published FMT trials and ongoing investigations to illustrate how donor selection might occur in practice. Finally, we show that typical FMT trials are not powered to discover individual taxa mediating patient responses, suggesting that clinicians should develop targeted hypotheses for retrospective analyses and design their clinical trials accordingly. Moving forward, developing and applying novel clinical trial design methodologies like rational donor selection will be necessary to ensure that FMT successfully translates into clinical impact.

Klíčová slova:

Bacteria – Clinical trials – Colorectal cancer – Inflammatory bowel disease – Metabolomics – Microbial taxonomy – Microbiome – Bile


Zdroje

1. Quraishi M.N. et al., 2017. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Alimentary pharmacology & therapeutics, 46(5), pp.479–493.

2. McDonald L.C. et al., 2018. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 66(7), pp.e1–e48.

3. Cammarota G. et al., 2017. European consensus conference on faecal microbiota transplantation in clinical practice. Gut, 66(4), pp.569–580. doi: 10.1136/gutjnl-2016-313017 28087657

4. Surawicz C.M. et al., 2013. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. The American journal of gastroenterology, 108(4), pp.478–98; quiz 499. doi: 10.1038/ajg.2013.4 23439232

5. Panchal P. et al., 2018. Scaling Safe Access to Fecal Microbiota Transplantation: Past, Present, and Future. Current gastroenterology reports, 20(4), p.14. doi: 10.1007/s11894-018-0619-8 29594746

6. Gelfand, 2018. Fecal Microbiota Transplantation (FMT) of FMP30 in Relapsing-Remitting Multiple Sclerosis—Full Text View—ClinicalTrials.gov. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT03594487 [Accessed November 28, 2018].

7. Kootte R.S. et al., 2017. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell metabolism, 26(4), pp.611–619.e6. doi: 10.1016/j.cmet.2017.09.008 28978426

8. Osman M., 2018. Transfer of Healthy Gut Flora for Restoration of Intestinal Microbiota Via Enema for Severe Acute Malnutrition—Full Text View—ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT03087097 [Accessed November 28, 2018].

9. Costello S.P. et al., 2017. Short Duration, Low Intensity, Pooled Fecal Microbiota Transplantation Induces Remission in Patients with Mild-Moderately Active Ulcerative Colitis: A Randomised Controlled Trial. Gastroenterology, 152(5), pp.S198–S199.

10. Paramsothy S. et al., 2017. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. The Lancet, 389(10075), pp.1218–1228.

11. Ott S.J. et al., 2017. Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection. Gastroenterology, 152(4), pp.799–811.e7. doi: 10.1053/j.gastro.2016.11.010 27866880

12. Zuo T. et al., 2018. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut, 67(4), pp.634–643. doi: 10.1136/gutjnl-2017-313952 28539351

13. Yatsunenko T. et al., 2012. Human gut microbiome viewed across age and geography. Nature, 486(7402), pp.222–227. doi: 10.1038/nature11053 22699611

14. Wilson B. C., Vatanen T., Cutfield W. S., & O’Sullivan J. M. (2019). The Super-Donor Phenomenon in Fecal Microbiota Transplantation. Front. Cell. Infect. Microbiol. 9: 2. doi: 10.3389/fcimb.2019.00002 30719428

15. Bafeta A. et al., 2017. Methods and Reporting Studies Assessing Fecal Microbiota Transplantation: A Systematic Review. Annals of Internal Medicine, 167(1), pp. 34–39. doi: 10.7326/M16-2810 28531908

16. Olesen S.W., et al., 2018. Searching for superstool: maximizing the therapeutic potential of FMT. Nature reviews. Gastroenterology & hepatology, 15(7), pp.387–388

17. Moayyedi P. et al., 2015. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology, 149(1), pp.102–109.e6. doi: 10.1053/j.gastro.2015.04.001 25857665

18. Kelly C.R. et al., 2016. Effect of Fecal Microbiota Transplantation on Recurrence in Multiply Recurrent Clostridium difficile Infection: A Randomized Trial. Annals of internal medicine, 165(9), pp.609–616. doi: 10.7326/M16-0271 27547925

19. van Nood E., Dijkgraaf M.G.W. & Keller J.J., 2013. Duodenal infusion of feces for recurrent Clostridium difficile. The New England journal of medicine, 368(22), p.2145.

20. Olesen S., Gurry T., and Alm E.J., 2017. Designing fecal microbiota transplant trials that account for differences in donor stool efficacy. Statistical methods in medical research, 27(10), pp. 2906–2917. doi: 10.1177/0962280216688502 28178876

21. Food and Drug Administration, 2013. Enforcement Policy Regarding Investigational New Drug Requirements for Use of Fecal Microbiota for Transplantation to Treat Clostridium difficile Infection Not Responsive to Standard Therapies. Accessed July 22, 2019. https://www.fda.gov/media/86440/download

22. Food and Drug Administration, 2019. Information Pertaining to Additional Safety Protections Regarding Use of Fecal Microbiota for Transplantation–Screening and Testing of Stool Donors for Multi-drug Resistant Organisms. Accessed July 22, 2019. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/information-pertaining-additional-safety-protections-regarding-use-fecal-microbiota-transplantation

23. OpenBiome, 2019. “OpenBiome Quality & Safety Program.” https://www.openbiome.org/safety. Accessed August 9, 2019.

24. Britton R. and Young V.B., 2014. Role of the Intestinal Microbiota in Resistance to Colonization by Clostridium difficile. Gastroenterology, 146(6), pp. 1547–1553. doi: 10.1053/j.gastro.2014.01.059 24503131

25. Zaneveld J., et al., 2017. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nature microbiology, 2(9), p.17121.

26. Osman M., et al., 2016, December. Donor efficacy in fecal microbiota transplantation for recurrent Clostridium difficile: evidence from a 1,999-Patient Cohort. In Open Forum Infectious Diseases (Vol. 3, No. suppl_1). Oxford University Press.

27. Hsiao A., et al., 2014. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature, 515(7527), p.423. doi: 10.1038/nature13738 25231861

28. Wilck N., et al., 2017. Salt-responsive gut commensal modulates T H 17 axis and disease. Nature, 551(7682), p.585. doi: 10.1038/nature24628 29143823

29. Kostic A.D., et al., 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell host & microbe, 14(2), pp.207–215.

30. Rubinstein M.R., et al., 2013. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell host & microbe, 14(2), pp.195–206.

31. Bullman S., et al., 2017. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science, 358(6369), pp.1443–1448. doi: 10.1126/science.aal5240 29170280

32. Friedman J., & Alm E. J. 2012. Inferring correlation networks from genomic survey data. PLoS computational biology, 8(9), e1002687. doi: 10.1371/journal.pcbi.1002687 23028285

33. Scheppach W., et al., 1992. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology, 103(1), pp.51–56. doi: 10.1016/0016-5085(92)91094-k 1612357

34. Duvallet C., et al., 2017. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nature communications, 8(1), p.1784. doi: 10.1038/s41467-017-01973-8 29209090

35. Schirmer M., et al., 2018. Compositional and Temporal Changes in the Gut Microbiome of Pediatric Ulcerative Colitis Patients Are Linked to Disease Course. Cell host & microbe, 24(4), pp.600–610.

36. Kump P., et al., 2018. The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis. Alimentary pharmacology & therapeutics, 47(1), pp.67–77.

37. Goyal A., et al., 2018. Safety, clinical response, and microbiome findings following fecal microbiota transplant in children with inflammatory bowel disease. Inflammatory bowel diseases, 24(2), pp.410–421. doi: 10.1093/ibd/izx035 29361092

38. Jacob V., et al., 2017. Single delivery of high-diversity fecal microbiota preparation by colonoscopy is safe and effective in increasing microbial diversity in active ulcerative colitis. Inflammatory bowel diseases, 23(6), pp.903–911. doi: 10.1097/MIB.0000000000001132 28445246

39. Vital M., et al., 2017. Colonic Butyrate-Producing Communities in Humans: an Overview Using Omics Data. MSystems, 2(6), pp.e00130–17. doi: 10.1128/mSystems.00130-17 29238752

40. Louis P., et al., 2010. Diversity of human colonic butyrate‐producing bacteria revealed by analysis of the butyryl‐CoA: acetate CoA‐transferase gene. Environmental microbiology, 12(2), pp.304–314. doi: 10.1111/j.1462-2920.2009.02066.x 19807780

41. Bajaj J.S., et al., 2017. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology, 66(6), pp.1727–1738. doi: 10.1002/hep.29306 28586116

42. Poyet M., Groussin M., Gibbons, et al., 2019. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nature medicine, pp.1–11. doi: 10.1038/s41591-018-0322-1

43. Hofmann A.F., 1989. Enterohepatic circulation of bile acids. Handbook of Physiology. The Gastrointestinal System, 4, pp.567–596.

44. Wang X. and Gibson G.R. 1993. Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Journal of applied microbiology, 75(4), pp.373–380.

45. Chen T. et al., 2017. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Scientific reports, 7(1), p.2594. doi: 10.1038/s41598-017-02995-4 28572676

46. Koeth R.A., et al., 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature medicine, 19(5), p.576. doi: 10.1038/nm.3145 23563705

47. Wang Z., et al., 2015. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell, 163(7), pp.1585–1595. doi: 10.1016/j.cell.2015.11.055 26687352

48. Blanton L.V., et al., 2016. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science, 351(6275), p.aad3311. doi: 10.1126/science.aad3311 26912898

49. Subramanian S., et al., 2014. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature, 510(7505), p.417. doi: 10.1038/nature13421 24896187

50. Stokholm J. et al., 2018. Maturation of the gut microbiome and risk of asthma in childhood. Nature communications, 9(1), p.141. doi: 10.1038/s41467-017-02573-2 29321519

51. Cox L.M. et al., 2014. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell, 158(4), pp.705–721. doi: 10.1016/j.cell.2014.05.052 25126780

52. Kostic A.D. et al., 2015. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell host & microbe, 17(2), pp.260–273.

53. Stein R.R., et al., 2018. Computer-guided design of optimal microbial consortia for immune system modulation. eLife, 7, p.e30916. doi: 10.7554/eLife.30916 29664397

54. The Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. nature, 486(7402), 207. doi: 10.1038/nature11234 22699609

55. Halfvarson J., et al., 2017. Dynamics of the human gut microbiome in inflammatory bowel disease. Nature microbiology, 2(5), p.17004.

56. Shade A. and Handelsman J., 2012. Beyond the Venn diagram: the hunt for a core microbiome. Environmental microbiology, 14(1), pp.4–12. doi: 10.1111/j.1462-2920.2011.02585.x 22004523

57. Fuentes S., et al., 2017. Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation. The ISME journal, 11(8), p.1877. doi: 10.1038/ismej.2017.44 28398347

58. Schubert A.M., et al., 2014. Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. MBio, 5(3), pp.e01021–14. doi: 10.1128/mBio.01021-14 24803517

59. Baxter N.T., et al., 2016. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome medicine, 8(1), p.37. doi: 10.1186/s13073-016-0290-3 27056827

60. Goodrich J.K., et al., 2014. Human genetics shape the gut microbiome. Cell, 159(4), pp.789–799. doi: 10.1016/j.cell.2014.09.053 25417156

61. Chu N.D., et al., 2019. Dynamic colonization of microbes and their functions after fecal microbiota transplantation for inflammatory bowel disease. bioRxiv, p.649384.

62. Ou J. et al., 2013. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. The American journal of clinical nutrition, 98(1), pp.111–120. doi: 10.3945/ajcn.112.056689 23719549

63. De Filippo C. et al., 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 107(33), pp.14691–14696. doi: 10.1073/pnas.1005963107 20679230

64. Bello M.G.D., et al., 2018. Preserving microbial diversity. Science, 362(6410), pp.33–34. doi: 10.1126/science.aau8816 30287652

65. Rabesandratana T., 2018. ‘Poop vault’ of human feces could preserve gut's microbial biodiversity—and help treat disease. Science, Nov. 2018.

66. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, et al., 2019. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Nature Biotechnology, p. 1. doi: 10.1038/nbt.4341

67. Amir A. et al., 2017. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems, 2(2), pp. e00191–16. doi: 10.1128/mSystems.00191-16 28289731

68. Bokulich N.A., et al., 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome, 6(1), p.90. doi: 10.1186/s40168-018-0470-z 29773078

69. Kakiyama G., et al., 2013. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. Journal of hepatology, 58(5), pp.949–955. doi: 10.1016/j.jhep.2013.01.003 23333527


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#