Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
Autoři:
Lisa Wiesent aff001; Ulrich Schultheiß aff004; Christof Schmid aff005; Thomas Schratzenstaller aff002; Aida Nonn aff001
Působiště autorů:
Computational Mechanics and Materials Lab, Ostbayerische Technische Hochschule (OTH) Regensburg, Regensburg, Germany
aff001; Regensburg Center of Biomedical Engineering (RCBE), Regensburg, Germany
aff002; Medical Device Lab, OTH Regensburg, Regensburg, Germany
aff003; Material Science and Surface Analytics Lab, OTH Regensburg, Regensburg, Germany
aff004; University Hospital Regensburg, Cardiothoracic and Cardiovascular Surgery, Regensburg, Germany
aff005
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224026
Souhrn
In-stent restenosis remains a major problem of arteriosclerosis treatment by stenting. Expansion-optimized stents could reduce this problem. With numerical simulations, stent designs/ expansion behaviours can be effectively analyzed. For reasons of efficiency, simplified models of balloon-expandable stents are often used, but their accuracy must be challenged due to insufficient experimental validation. In this work, a realistic stent life-cycle simulation has been performed including balloon folding, stent crimping and free expansion of the balloon-stent-system. The successful simulation and validation of two stent designs with homogenous and heterogeneous stent stiffness and an asymmetrically positioned stent on the balloon catheter confirm the universal applicability of the simulation approach. Dogboning ratio, as well as the final dimensions of the folded balloon, the crimped and expanded stent, correspond well to the experimental dimensions with only slight deviations. In contrast to the detailed stent life-cycle simulation, a displacement-controlled simulation can not predict the transient stent expansion, but is suitable to reproduce the final expanded stent shape and the associated stress states. The detailed stent life-cycle simulation is thus essential for stent expansion analysis/optimization, whereas for reasons of computational efficiency, the displacement-controlled approach can be considered in the context of pure stress analysis.
Klíčová slova:
Catheters – Deformation – Jaw – Life cycles – Simulation and modeling – Stent implantation – Stiffness – Coronary stenting
Zdroje
1. World Health Organization. Global Health Estimates 2016: Deaths by Cause, Age, Sex by Country and by Region 2000-2016; 2018. Available from: http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
2. Farb A, Sangiorgi G, Carter AJ, Walley VM, Edwards WD, Schwartz RS, et al. Pathology of Acute and Chronic Coronary Stenting in Humans. Circulation. 1999;99(1):44–52. doi: 10.1161/01.cir.99.1.44 9884378
3. Kim MS, Dean LS. In-Stent Restenosis. Cardiovascular Therapeutics. 2011;29(3):190–198. doi: 10.1111/j.1755-5922.2010.00155.x 20406239
4. Kaiser C, Brunner-La Rocca HP, Buser PT, Bonetti PO, Osswald S, Linka A, et al. Incremental cost-effectiveness of drug-eluting stents compared with a third-generation bare-metal stent in a real-world setting: randomised Basel Stent Kosten Effektivitäts Trial (BASKET). The Lancet. 2005;366(9489):921–929.
5. Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O’Shaughnessy C, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. The New England journal of medicine. 2003;349(14):1315–1323. doi: 10.1056/NEJMoa035071 14523139
6. Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. The New England journal of medicine. 2002;346(23):1773–1780. doi: 10.1056/NEJMoa012843 12050336
7. Lepor NE, Madyoon H, Kereiakes DJ. Effective and efficient strategies for coronary revascularization in the drug-eluting stent era. Reviews in cardiovascular medicine. 2002;3 Suppl 5:S38–50. 12478234
8. De Beule M, Mortier P, Carlier SG, Verhegghe B, van Impe R, Verdonck P. Realistic finite element-based stent design: The impact of balloon folding. Journal of Biomechanics. 2008;41(2):383–389. doi: 10.1016/j.jbiomech.2007.08.014 17920068
9. Bukala J, Kwiatkowski P, Malachowski J. Numerical analysis of crimping and inflation process of balloon-expandable coronary stent using implicit solution. International journal for numerical methods in biomedical engineering. 2017;33(12). doi: 10.1002/cnm.2890 28425201
10. Dumoulin C, Cochelin B. Mechanical behaviour modelling of balloon-expandable stents. Journal of Biomechanics. 2000;33(11):1461–1470. doi: 10.1016/s0021-9290(00)00098-1 10940405
11. Lally C, Dolan F, Prendergast PJ. Cardiovascular stent design and vessel stresses: A finite element analysis. Journal of Biomechanics. 2005;38(8):1574–1581. doi: 10.1016/j.jbiomech.2004.07.022 15958213
12. Migliavacca F, Petrini L, Colombo M, Auricchio F, Pietrabissa R. Mechanical behavior of coronary stents investigated through the finite element method. Journal of Biomechanics. 2002;35(6):803–811. doi: 10.1016/s0021-9290(02)00033-7 12021000
13. Auricchio F, Constantinescu A, Conti M, Scalet G. A computational approach for the lifetime prediction of cardiovascular balloon-expandable stents. International Journal of Fatigue. 2015;75:69–79. doi: 10.1016/j.ijfatigue.2015.02.002
14. Wang Q, Fang G, Zhao Y, Wang G, Cai T. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents. Journal of the mechanical behavior of biomedical materials. 2017;65:415–427. doi: 10.1016/j.jmbbm.2016.08.033 27643678
15. Zhao S, Gu L, Froemming SR. On the importance of modeling stent procedure for predicting arterial mechanics. Journal of Biomechanical Engineering. 2012;134(12):121005 1–6. doi: 10.1115/1.4023094
16. David Chua SN, MacDonald BJ, Hashmi MSJ. Effects of varying slotted tube (stent) geometry on its expansion behaviour using finite element method. Journal of Materials Processing Technology. 2004;155-156:1764–1771. doi: 10.1016/j.jmatprotec.2004.04.395
17. Debusschere N, Segers P, Dubruel P, Verhegghe B, de Beule M. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. Journal of Biomechanics. 2015;48(10):2012–2018. doi: 10.1016/j.jbiomech.2015.03.024 25907549
18. Kiousis DE, Wulff AR, Holzapfel GA. Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter-stent systems. Annals of Biomedical Engineering. 2009;37(2):315–330. doi: 10.1007/s10439-008-9606-9 19048377
19. Wang WQ, Liang DK, Yang DZ, Qi M. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. Journal of Biomechanics. 2006;39(1):21–32. doi: 10.1016/j.jbiomech.2004.11.003 16271584
20. Zahedmanesh H, John Kelly D, Lally C. Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy. Journal of Biomechanics. 2010;43(11):2126–2132. doi: 10.1016/j.jbiomech.2010.03.050 20452594
21. Schiavone A, Qiu TY, Zhao LG. Crimping and deployment of metallic and polymeric stents—finite element modelling. Vessel Plus. 2017;1(1). doi: 10.20517/2574-1209.2016.03
22. Migliavacca F, Petrini L, Montanari V, Quagliana I, Auricchio F, Dubini G. A predictive study of the mechanical behaviour of coronary stents by computer modelling. Medical engineering & physics. 2005;27(1):13–18.
23. Etave F, Finet G, Boivin M, Boyer JC, Rioufol G, Thollet G. Mechanical properties of coronary stents determined by using finite element analysis. Journal of Biomechanics. 2001;34(8):1065–1075. doi: 10.1016/s0021-9290(01)00026-4 11448698
24. Auricchio F, Di Loretto M, SACCO E. Finite-element Analysis of a Stenotic Artery Revascularization Through a Stent Insertion. Computer methods in biomechanics and biomedical engineering. 2001;4(3):249–263. doi: 10.1080/10255840108908007
25. Gervaso F, Capelli C, Petrini L, Lattanzio S, Di Virgilio L, Migliavacca F. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. Journal of Biomechanics. 2008;41(6):1206–1212. doi: 10.1016/j.jbiomech.2008.01.027 18374340
26. Kim DB, Choi H, Joo SM, Kim HK, Shin JH, Hwang MH, et al. A comparative reliability and performance study of different stent designs in terms of mechanical properties: foreshortening, recoil, radial force, and flexibility. Artificial organs. 2013;37(4):368–379. doi: 10.1111/aor.12001 23461583
27. Chua SND, Mac Donald BJ, Hashmi MSJ. Finite-element simulation of stent expansion. Journal of Materials Processing Technology. 2002;120(1-3):335–340. doi: 10.1016/S0924-0136(01)01127-X
28. SIMULIA Abaqus. Abaqus Theory Manual 6.13. Simulia; 2013.
29. Langdon GS, Schleyer GK. Unusual strain rate sensitive behaviour of AISI 316L austenitic stainless steel. The Journal of Strain Analysis for Engineering Design. 2004;39(1):71–86. doi: 10.1177/030932470403900106
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy