Mixotrophic cultivation of Spirulina platensis in dairy wastewater: Effects on the production of biomass, biochemical composition and antioxidant capacity
Autoři:
Maria I. B. Pereira aff001; Bruna M. E. Chagas aff001; Roberto Sassi aff002; Guilherme F. Medeiros aff003; Emerson M. Aguiar aff001; Luiz H. F. Borba aff001; Emanuelle P. E. Silva aff001; Júlio C. Andrade Neto aff001; Adriano H. N. Rangel aff001
Působiště autorů:
Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
aff001; Department of Systematic Ecology, Federal University of Paraíba, João Pessoa, PB, Brazil
aff002; Department of Oceanography and Limnology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224294
Souhrn
Mixotrophic cultivation of microalgae provides a very promising alternative for producing carbohydrate-rich biomass to convert into bioethanol and value-added biocompounds, such as vitamins, pigments, proteins, lipids and antioxidant compounds. Spirulina platensis may present high yields of biomass and carbohydrates when it is grown under mixotrophic conditions using cheese whey. However, there are no previous studies evaluating the influence of this culture system on the profile of fatty acids or antioxidant compounds of this species, which are extremely important for food and pharmaceutical applications and would add value to the cultivation process. S. platensis presented higher specific growth rates, biomass productivity and carbohydrate content under mixotrophic conditions; however, the antioxidant capacity and the protein and lipid content were lower than that of the autotrophic culture. The maximum biomass yield was 2.98 ±0.07 g/L in growth medium with 5.0% whey. The phenolic compound concentration was the same for the biomass obtained under autotrophic and mixotrophic conditions with 2.5% and 5.0% whey. The phenolic compound concentrations showed no significant differences except for that in the growth medium with 10.0% whey, which presented an average value of 22.37±0.14 mg gallic acid/g. Mixotrophic cultivation of S. platensis using whey can be considered a viable alternative to reduce the costs of producing S. platensis biomass and carbohydrates, shorten cultivation time and produce carbohydrates, as it does not require adding expensive chemical nutrients to the growth medium and also takes advantage of cheese whey, an adverse dairy industry byproduct.
Klíčová slova:
Antioxidants – Carbohydrates – Fatty acids – Cheeses – Lipids – Phenols – Ecological productivity – Bioethanol
Zdroje
1. Brasil BSAF, Siqueira FG, Salum TFC, Zanette CM, Spier MR. Microalgae and cyanobacteria as enzyme biofactories. Algae Res. 2017;25: 76–89.
2. Salla ACV, Margarites AC, Seibel FI, Holz LC, Brião VB, Bertolin TE, et al. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresour Technol. 2016;209: 133–141. doi: 10.1016/j.biortech.2016.02.069 26967336
3. Goiris K, Colen WV, Wilches I, Gagnon J, Faucheux N, Heitz M. Impact of nutrient stress on antioxidant production in three species of microalgae. Algae Res. 2015;7: 51–57.
4. Barkallah M, Dammak M, Louati I, Hentati F, Hadrich B, Mechichi T, et al. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. Lwt-food sci technol. 2017;84: 323–330.
5. Abdel-Daim MM, Abuzead SMM, Halawa SM. Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS One. 2013;8: e72991. doi: 10.1371/journal.pone.0072991 24039839
6. Dixon RA, Paiva NL. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995;7: 1085–1097. doi: 10.1105/tpc.7.7.1085 12242399
7. Neofotis P, Huang A, Sury K, Chang W, Joseph F, Gabr A, et al. Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algae Res. 2016; 15:164–178.
8. Khoo KS, Lee SY, Ooi CW, Fu X, Miao X, Ling TC, et al. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresour Technol. 2019;288: 121606. doi: 10.1016/j.biortech.2019.121606 31178260
9. Ren HY, Xiao RN, Kong F, Zhao L, Xing D, Ma J, et al. Enhanced biomass and lipid accumulation of mixotrophic microalgae by using low-strength ultrasonic stimulation. Bioresour Technol. 2019; 272:606–610. doi: 10.1016/j.biortech.2018.10.058 30389248
10. Margarites AC, Volpato N, Araújo E, Cardoso LG, Bertolin TE, Colla LM, et al. Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity. Environ Technol. 2017;38:2209–2216. doi: 10.1080/09593330.2016.1254685 27790947
11. Wang Y, Ho S, Cheng C, Guo W, Nagarajan D, Ren N, et al. Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol. 2016;222: 485–497. doi: 10.1016/j.biortech.2016.09.106 27765375
12. Jiao Zhan J, Rong J, Wang Q. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. Int J Hydrogen Energ. 2017;47:8505–8517.
13. Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayeghb F, Aggelis G. Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv. 2014;32: 1476–1493. doi: 10.1016/j.biotechadv.2014.10.003 25449285
14. Carvalho F, Prazeres AR, Rivas J. Cheese whey wastewater: Characterization and treatment. Sci Total Environ. 2013;445–446: 385–396. doi: 10.1016/j.scitotenv.2012.10.012
15. Girard JM, Roy ML, Hafsa MB, Gagnon J, Faucheux N, Heitz M. et al. Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algae Res. 2014;5: 241–248.
16. Tsolcha ON, Tekerlekopoulou AG, Akratos CS, Antonopoulou G, Aggelis G, Genitsaris S, et al. A Leptolyngbya-based microbial consortium for agroindustrial wastewaters treatment and biodiesel production. Environ Sci Poll Res. 2018;25: 17957–17966.
17. Zarrouk C. Contribution al’étude du cyanophycée. Influence de divers facteurs physiques etchimiquessur la croissanceet la photosynthèse de Spirulina maxima, thèse de doctorat, Université De Paris. 1966. Available from: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1332043.
18. Shi W, Li S, Li G, Wang W, Chen Q, Li Y. Investigation of main factors affecting the growth rate of Spirulina. Optik. 2016;127: 6688–6694.
19. Lourenço SO. Cultivo de microalgas marinhas: princípios e aplicações. 1st ed. São Carlos: Rima; 2006.
20. Monod J. (1941) Recherches sur La Croissance des Cultures Bactériennes. thèse de doctorat, Université de Paris. 1941. Available from: http://bibdigital.rjb.csic.es/Imagenes/P0044_S11_03/P0044_S11_03_0208.pd
21. Association of Official Analytical Chemists AOAC. Official Methods of Analysis (15th edn.), Association of Official Analytical Chemists, Arlington, VA. 1990. Available from: http://archive.org/details/gov.law.aoac.methods.1.1990.
22. Lourenço SO, Barbarino E, Marquez UML, Aidar E. Distribution of intra cellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol. 2002;39: 17–32.
23. Kochert G. Carbohydrates determination by the phenol sulffuric. In: Hellembust JA, Craigie JS, editors. Handbook of Phycological Methods. Physiological and Biochemical Methods. Cambridge: Cambridge Univerty; 1978 p. 95–97.
24. Derner RB. Efeito de fontes de carbono no crescimento e na composição bioquímica das microalgas Chaetoceros muelleri e Thalassiosira fluviatilis, com ênfase no teor de ácidos graxos poli-insaturados. Tese de doutorado, Universidade Federal de Santa Catarina. 2006. Available from: https://repositorio.ufsc.br/bitstream/handle/123456789/88993/225941.pdf?sequence=1.
25. Bligh EG, Dyer WJ. A rapid method for total lipid extraction and purification. Can J Biochem Physiol. 1959;37: 911–917. doi: 10.1139/o59-099 13671378
26. Menezes RS, Leles MIG, Soares AT, Franco PIM, Antoniosi Filho NR, Santanna CL. Avaliação da potencialidade de microalgas dulcícolas como fonte de matéria-prima graxa para a produção de biodiesel. Quím Nova. 2013;13: 10–15.
27. Slinkard K, Singleton VL. Total phenol analysis: Automation and comparison with manual methods. Am J Enol Vitic. 1977;28: 49–55. Available from: http://www.ajevonline.org/content/ajev/28/1/49.full.pdf.
28. Rufino MSM, Alves RE, Brito ES, Morais SM, Sampaio CG, Pérez-Jiménez J, et al. (2007) Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS˙+. Comunicado Técnico 128. 2007, ISSN 1679-6535. Available from: http://www.cnpat.embrapa.br/cnpat/down/index.php?pub/Cot_128.pdf.
29. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996; 239: 70–76. doi: 10.1006/abio.1996.0292 8660627
30. Sales DC, Rangel AHN, Urbano SA, Freitas AR, Tonhati H, Novaes LP, et al. Relationship between mozzarella yield and milk composition, processing factors, and recovery of whey constituents. J Dairy Sci. 2017;100: 4308–4321. doi: 10.3168/jds.2016-12392 28342605
31. Mourthé K. Obtenção de biomassa de Arthrospira platensis (Spirulina platensis) utilizando do soro de leite. Tese de doutorado, Universidade Federal de Minas Gerais. 2010. Available from: http://www.bibliotecadigital.ufmg.br/dspace/handle/1843/BUOS-8EJQW3.
32. Kumari A, Sharma V, Pathak AK, Guria C. Cultivation of Spirulina platensis using NPK-10:26:26 complex fertilizer and simulated flue gas in sintered disk chromatographic glass bubble column. J Environ Chem Eng. 2014;2: 1859–1869.
33. Andrade MR, Costa JAV. Culture of microalga Spirulina platensis in alternative sources of nutrients. Ciênc agrotec. 2008;32: 1551–1556.
34. Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Biosci Bioeng 1993;76: 408–410.
35. Chen F, Zhang Y. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb Technol. 1997;20: 221–224.
36. Economou CN, Marinakis N, Moustaka-Gouni M, Kehayias G. Aggelis G. Vayenas DV. Lipid production by the filamentous cyanobacterium Limnothrix sp. growing on a synthetic wastewater in suspended- and attached-growth photobioreactor systems. Ann Microbiol. 2015;65: 1941–1948.
37. Dourou M, Tsolcha ON, Tekerlekopoulou AG, Bokas D, Aggelis G. Fish farm effluents are suitable growth media for Nannochloropsis gaditana, a polyunsaturated fatty acid producing microalga. Eng Life Sci. 2018;18: 851–860.
38. Mohan SV, Rohit MV, Chiranjeevi P, Chandra R, Navaneeth B. Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: Progress and perspectives. Bioresour Technol. 2015;184: 169–178. doi: 10.1016/j.biortech.2014.10.056 25497058
39. Berenguel M, Rodríguez F, Acién FG, García JL. Model predictive control of pH in tubular photobioreactors. J Process Contr. 2004;14: 377–387.
40. Pelizer LH, Danesi ED, Rangel CO, Sassano CEN, Carvalho JCM, Sato S, et al. Influence of inoculum age and concentration in Spirulina platensis cultivation. J Food Eng. 2003;56: 371–375.
41. Habib MAB, Parvin M, Huntington TC, Huntington TC, Hasan MR. A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish. FAO Fisheries and Aquaculture Circular. No. 1034 2008, FAO, Rome. Available from: http://www.fao.org/3/i0424e/i0424e00.pdf.
42. Chagas BME, Dorado C, Serapiglia MJ, Mullen CA, Boateng AA, Melo MAF, et al. Catalytic pyrolysis-GC/MS of Spirulina.: Evaluation of a highly proteinaceous biomass source for production of fuels and chemicals. Fuel. 2016a;179: 124–134.
43. Braga VS, Mastrantonio DJS, Costa JAV, Moraisa MG. Cultivation strategy to stimulate high carbohydrate content in Spirulina biomass. Bioresour Technol. 2018;269: 221–226. doi: 10.1016/j.biortech.2018.08.105 30176519
44. Madkour FF, Kamil W, Nasr H. Production and Nutritive Value of S. platensis in Reduced Cost Media. Egypt J Aquat Res. 2012; 38:51–57.
45. Rico M, López A, Santana-Casiano JM, González JM, González-Dávila M. Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol Oceanogr. 2013;58: 144–152.
46. Mullen CA, Boateng AA. Production and analysis of fast pyrolysis oils from proteinaceous biomass. Bioenergy Res. 2011;4: 303–311.
47. Prates DF, Radmann EM, Duarte JH, Morais MG, Costa JAV. Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresour Technol. 2018;256: 38–43. doi: 10.1016/j.biortech.2018.01.122 29428612
48. Rodríguez De Marco E, Steffolani ME, Martínez CS, León AE. Effects of Spirulina biomass on the technological and nutritional quality of bread wheat pasta. Lwt-food sci technol. 2014;58: 102–108.
49. Batista AP, Niccolai A, Fradinho P, Fragoso S, Bursic I, Rodolfi L, et al. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017;26: 161–171.
50. Sousa e Silva A, Moreira LM, Magalhães WT, Farias WRL, Rocha MVP, Bastos AKP. Extraction of biomolecules from Spirulina platensis using non-conventional processes and harmless solvents. J Environ Chem Eng. 2017;5: 2101–2106.
51. Parisi AS, Younes S, Reinehr CO, Colla LM. Assessment of the antibacterial activity of microalgae Spirulina platensis. J Appl Pharm Sci. 2009;30: 97–301.
52. Colla LM, Reinehr CO, Reichert CJ, Costa AV. Production of biomass and neutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour Technol. 2007;98: 1489–1493. doi: 10.1016/j.biortech.2005.09.030 17070035
53. Kepekçi RA, Saygideger SD. Enhancement of phenolic compound production in Spirulina. platensis by two-step batch mode cultivation. J Appl Phycol. 2012;24: 897–905.
54. Kovacik J, Klejdus B, Backor M. Physiological Responses of Scenedesmus quadricauda (Chlorophyceae) to UV-A and UV-C Light. Photochem photobiol. 2010; 86: 612–616. doi: 10.1111/j.1751-1097.2010.00708.x 20202162
55. Hossain MF, Ratnayake RR, Meerajini K, Mozafari MR. Antioxidant properties in some selected cyanobacteria isolated from fresh water bodies of Sri Lanka. Food Sci Nutr. 2016;4: 753–758. doi: 10.1002/fsn3.340 27625779
56. Barkallah M, Dammak M, Louati I, Hentati F, Hadrich B, Mechichi T, et al. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. Lwt-food sci technol. 2017;84: 323–330.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy