An observational study comparing HPV prevalence and type distribution between HPV-vaccinated and -unvaccinated girls after introduction of school-based HPV vaccination in Norway
Autoři:
Espen Enerly aff001; Ragnhild Flingtorp aff001; Irene Kraus Christiansen aff002; Suzanne Campbell aff001; Mona Hansen aff002; Tor Åge Myklebust aff003; Elisabete Weiderpass aff005; Mari Nygård aff001
Působiště autorů:
Department of Research, Cancer Registry of Norway, Oslo, Norway
aff001; Department of Microbiology and Infection Control, National HPV Reference Laboratory, Akershus University Hospital, Lørenskog, Norway
aff002; Department of Registration, Cancer Registry of Norway, Oslo, Norway
aff003; Department of Research and Innovation, Møre and Romsdal Hospital Trust, Ålesund, Norway
aff004; International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
aff005
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223612
Souhrn
Background
Many countries have initiated school-based human papillomavirus (HPV) vaccination programs. The real-life effectiveness of HPV vaccines has become increasingly evident, especially among girls vaccinated before HPV exposure in countries with high vaccine uptake. In 2009, Norway initiated a school-based HPV vaccination program for 12-year-old girls using the quadrivalent HPV vaccine (Gardasil®), which targets HPV6, 11, 16, and 18. Here, we aim to assess type-specific vaginal and oral HPV prevalence in vaccinated compared with unvaccinated girls in the first birth cohort eligible for school-based vaccination (born in 1997).
Methods
This observational, cross-sectional study measured the HPV prevalence ratio (PR) between vaccinated and unvaccinated girls in Norway. Facebook advertisement was used to recruit participants and disseminate information about the study. Participants self-sampled vaginal and oral specimens using an Evalyn® Brush and a FLOQSwab™, respectively. Sexual behavior was ascertained through a short questionnaire.
Results
Among the 312 participants, 239 (76.6%) had received at least one dose of HPV vaccine prior to sexual debut. 39.1% of vaginal samples were positive for any HPV type, with similar prevalence among vaccinated and unvaccinated girls (38.5% vs 41.1%, PR: 0.93, 95% confidence interval [CI]: 0.62–1.41). For vaccine-targeted types there was some evidence of lower prevalence in the vaccinated (0.4%) compared to the unvaccinated (6.8%) group (PR: 0.06, 95%CI: 0.01–0.52). This difference remained after adjusting for sexual behavior (PR: 0.04, 95%CI: 0.00–0.42). Only four oral samples were positive for any HPV type, and all of these participants had received at least one dose of HPV vaccine at least 1 year before oral sexual debut.
Conclusion
There is evidence of a lower prevalence of vaccine-targeted HPV types in the vagina of vaccinated girls from the first birth cohort eligible for school-based HPV vaccination in Norway; this was not the case when considering all HPV types or types not included in the quadrivalent HPV vaccine.
Klíčová slova:
Cohort studies – Human papillomavirus – Human papillomavirus infection – Human sexual behavior – Vaccination and immunization – Vaccines – Norway – Facebook
Zdroje
1. Chesson HW, Dunne EF, Hariri S, Markowitz LE. The estimated lifetime probability of acquiring human papillomavirus in the United States. Sex Transm Dis. 2014;41(11):660–4. Epub 2014/10/10. doi: 10.1097/OLQ.0000000000000193 25299412.
2. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs, Volume 100 (B) ed. Lyon, France: International Agency for Research on Cancer; 2012.
3. Wheeler CM. The natural history of cervical human papillomavirus infections and cervical cancer: gaps in knowledge and future horizons. Obstet Gynecol Clin North Am. 2013;40(2):165–76. doi: 10.1016/j.ogc.2013.02.004 23732023.
4. Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer. 2007;121(3):621–32. Epub 2007/04/04. doi: 10.1002/ijc.22527 17405118.
5. Parkin DM, Bray F. Chapter 2: The burden of HPV-related cancers. Vaccine. 2006;24 Suppl 3:S3/11–25. Epub 2006/09/05. doi: 10.1016/j.vaccine.2006.05.111 16949997.
6. Ault KA. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: a combined analysis of four randomised clinical trials. Lancet. 2007;369(9576):1861–8. Epub 2007/06/05. S0140-6736(07)60852-6 [pii] doi: 10.1016/S0140-6736(07)60852-6 17544766.
7. Paavonen J, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter D, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009;374(9686):301–14. doi: 10.1016/S0140-6736(09)61248-4 19586656.
8. Joura EA, Giuliano AR, Iversen OE, Bouchard C, Mao C, Mehlsen J, et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med. 2015;372(8):711–23. doi: 10.1056/NEJMoa1405044 25693011.
9. Garland SM, Steben M, Sings HL, James M, Lu S, Railkar R, et al. Natural history of genital warts: analysis of the placebo arm of 2 randomized phase III trials of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine. J Infect Dis. 2009;199(6):805–14. doi: 10.1086/597071 19199546.
10. Kjaer SK, Tran TN, Sparen P, Tryggvadottir L, Munk C, Dasbach E, et al. The burden of genital warts: a study of nearly 70,000 women from the general female population in the 4 Nordic countries. J Infect Dis. 2007;196(10):1447–54. Epub 2007/11/17. JID38148 [pii] doi: 10.1086/522863 18008222.
11. Bruni L, Diaz M, Barrionuevo-Rosas L, Herrero R, Bray F, Bosch FX, et al. Global estimates of human papillomavirus vaccination coverage by region and income level: a pooled analysis. The Lancet Global Health. 2016;4(7):e453–e63. doi: 10.1016/S2214-109X(16)30099-7 27340003
12. Garland SM, Kjaer SK, Munoz N, Block SL, Brown DR, DiNubile MJ, et al. Impact and Effectiveness of the Quadrivalent Human Papillomavirus Vaccine: A Systematic Review of 10 Years of Real-world Experience. Clin Infect Dis. 2016;63(4):519–27. Epub 2016/05/28. doi: 10.1093/cid/ciw354 27230391.
13. Lee LY, Garland SM. Human papillomavirus vaccination: the population impact. F1000Research. 2017;6:866. Epub 2017/07/01. doi: 10.12688/f1000research.10691.1 28663791.
14. Guo F, Hirth JM, Berenson AB. Comparison of HPV prevalence between HPV-vaccinated and non-vaccinated young adult women (20–26 years). Hum Vaccin Immunother. 2015;11(10):2337–44. Epub 2015/09/17. doi: 10.1080/21645515.2015.1066948 26376014.
15. Drolet M, Benard E, Boily MC, Ali H, Baandrup L, Bauer H, et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis. 2015;15(5):565–80. doi: 10.1016/S1473-3099(14)71073-4 25744474.
16. Tabrizi SN, Brotherton JML, Kaldor JM, Skinner SR, Liu B, Bateson D, et al. Assessment of herd immunity and cross-protection after a human papillomavirus vaccination programme in Australia: a repeat cross-sectional study. The Lancet Infectious Diseases. 2014;14(10):958–66. doi: 10.1016/S1473-3099(14)70841-2 25107680
17. Hirth JM, Chang M, Resto VA. Prevalence of oral human papillomavirus by vaccination status among young adults (18-30years old). Vaccine. 2017;35(27):3446–51. Epub 2017/05/21. doi: 10.1016/j.vaccine.2017.05.025 28526331.
18. Mehanna H, Bryant TS, Babrah J, Louie K, Bryant JL, Spruce RJ, et al. Human papillomavirus (HPV) vaccine effectiveness and potential herd immunity for reducing oncogenic oropharyngeal HPV16 prevalence in the UK; a cross-sectional study. Clinical Infectious Diseases. 2018:ciy1081. doi: 10.1093/cid/ciy1081 30590469
19. Bergsaker MAR, Feiring B, Hagerup-Jenssen M, Flem E, Aase A, Arnesen T, et al. Barnevaksinasjonsprogrammet i Norge. Rapport for 2011. 2012.
20. Aaberge I AA, Arnesen T, Bergsager G, Blystad H, Bruun T, Daae A, Dudman S, Feiring B, Greve-Isdahl M, Kongsrud S, Løvlie AL, Mengshoel AT, Steinbakk M, Stålcrantz J, Trogstad L, Vestrheim D, Watle S, Wiklund BS, Winje BA. Barnevaksinasjonsprogrammet i Norge. Rapport for 2017. 2018.
21. Feiring B, Laake I, Christiansen IK, Hansen M, Stalcrantz J, Ambur OH, et al. Substantial Decline in Prevalence of Vaccine-Type and Nonvaccine-Type Human Papillomavirus (HPV) in Vaccinated and Unvaccinated Girls 5 Years After Implementing HPV Vaccine in Norway. J Infect Dis. 2018;218(12):1900–10. Epub 2018/07/17. doi: 10.1093/infdis/jiy432 30010913.
22. The Norwegian Directorate of eHealth. Helse Norge 2019 [cited 2019 02.01.2019]. Available from: www.helsenorge.no.
23. van Baars R, Bosgraaf RP, ter Harmsel BW, Melchers WJ, Quint WG, Bekkers RL. Dry storage and transport of a cervicovaginal self-sample by use of the Evalyn Brush, providing reliable human papillomavirus detection combined with comfort for women. J Clin Microbiol. 2012;50(12):3937–43. doi: 10.1128/JCM.01506-12 23015677.
24. Schmitt M, Bravo IG, Snijders PJ, Gissmann L, Pawlita M, Waterboer T. Bead-based multiplex genotyping of human papillomaviruses. J Clin Microbiol. 2006;44(2):504–12. doi: 10.1128/JCM.44.2.504-512.2006 16455905.
25. Soderlund-Strand A, Carlson J, Dillner J. Modified general primer PCR system for sensitive detection of multiple types of oncogenic human papillomavirus. J Clin Microbiol. 2009;47(3):541–6. doi: 10.1128/JCM.02007-08 19144817.
26. Althubaiti A. Information bias in health research: definition, pitfalls, and adjustment methods. Journal of multidisciplinary healthcare. 2016;9:211–7. Epub 2016/05/25. doi: 10.2147/JMDH.S104807 27217764.
27. Dillner J, Nygard M, Munk C, Hortlund M, Hansen BT, Lagheden C, et al. Decline of HPV infections in Scandinavian cervical screening populations after introduction of HPV vaccination programs. Vaccine. 2018;36(26):3820–9. Epub 2018/05/21. doi: 10.1016/j.vaccine.2018.05.019 29778519.
28. Gillison ML, Broutian T, Pickard RKL, Tong Z-y, Xiao W, Kahle L, et al. Prevalence of Oral HPV Infection in the United States, 2009–2010. JAMA. 2012;307(7):693–703. doi: 10.1001/jama.2012.101 22282321
29. Dillner J, Kjaer SK, Wheeler CM, Sigurdsson K, Iversen OE, Hernandez-Avila M, et al. Four year efficacy of prophylactic human papillomavirus quadrivalent vaccine against low grade cervical, vulvar, and vaginal intraepithelial neoplasia and anogenital warts: randomised controlled trial. Bmj. 2010;341:c3493. Epub 2010/07/22. doi: 10.1136/bmj.c3493 20647284.
30. Tranberg M, Jensen JS, Bech BH, Blaakaer J, Svanholm H, Andersen B. Good concordance of HPV detection between cervico-vaginal self-samples and general practitioner-collected samples using the Cobas 4800 HPV DNA test. BMC Infect Dis. 2018;18(1):348. Epub 2018/07/29. doi: 10.1186/s12879-018-3254-y 30053836.
31. Jentschke M, Chen K, Arbyn M, Hertel B, Noskowicz M, Soergel P, et al. Direct comparison of two vaginal self-sampling devices for the detection of human papillomavirus infections. J Clin Virol. 2016;82:46–50. Epub 2016/07/20. doi: 10.1016/j.jcv.2016.06.016 27434147.
32. Ketelaars PJW, Bosgraaf RP, Siebers AG, Massuger L, van der Linden JC, Wauters CAP, et al. High-risk human papillomavirus detection in self-sampling compared to physician-taken smear in a responder population of the Dutch cervical screening: Results of the VERA study. Prev Med. 2017;101:96–101. Epub 2017/06/06. doi: 10.1016/j.ypmed.2017.05.021 28579497.
33. Ejegod DM, Pedersen H, Alzua GP, Pedersen C, Bonde J. Time and temperature dependent analytical stability of dry-collected Evalyn HPV self-sampling brush for cervical cancer screening. Papillomavirus research (Amsterdam, Netherlands). 2018;5:192–200. Epub 2018/04/25. doi: 10.1016/j.pvr.2018.04.005 29689311.
34. Conway DI, Robertson C, Gray H, Young L, McDaid LM, Winter AJ, et al. Human Papilloma Virus (HPV) Oral Prevalence in Scotland (HOPSCOTCH): A Feasibility Study in Dental Settings. PLoS One. 2016;11(11):e0165847. Epub 2016/11/20. doi: 10.1371/journal.pone.0165847 27861508.
35. Lupato V, Holzinger D, Hofler D, Menegaldo A, Giorgi Rossi P, Del Mistro A, et al. Prevalence and Determinants of Oral Human Papillomavirus Infection in 500 Young Adults from Italy. PLoS One. 2017;12(1):e0170091. Epub 2017/01/20. doi: 10.1371/journal.pone.0170091 28103272.
36. Leinonen MK, Schee K, Jonassen CM, Lie AK, Nystrand CF, Rangberg A, et al. Safety and acceptability of human papillomavirus testing of self-collected specimens: A methodologic study of the impact of collection devices and HPV assays on sensitivity for cervical cancer and high-grade lesions. J Clin Virol. 2018;99–100:22–30. doi: 10.1016/j.jcv.2017.12.008 29289814.
37. de Souza MMA, Hartel G, Whiteman DC, Antonsson A. Detection of oral HPV infection—Comparison of two different specimen collection methods and two HPV detection methods. Diagn Microbiol Infect Dis. 2018;90(4):267–71. Epub 2018/01/11. doi: 10.1016/j.diagmicrobio.2017.12.004 29317137.
38. Kosinski M, Matz SC, Gosling SD, Popov V, Stillwell D. Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. The American psychologist. 2015;70(6):543–56. Epub 2015/09/09. doi: 10.1037/a0039210 26348336.
39. Akers L, Gordon JS. Using Facebook for Large-Scale Online Randomized Clinical Trial Recruitment: Effective Advertising Strategies. Journal of medical Internet research. 2018;20(11):e290. Epub 2018/11/10. doi: 10.2196/jmir.9372 30409765.
40. Subasinghe AK, Nguyen M, Wark JD, Tabrizi SN, Garland SM. Targeted Facebook Advertising is a Novel and Effective Method of Recruiting Participants into a Human Papillomavirus Vaccine Effectiveness Study. JMIR research protocols. 2016;5(3):e154. Epub 2016/07/28. doi: 10.2196/resprot.5679 27450586.
41. Ipsos. Ipsos SoMe-tracker Q4'17 2018 [updated 17.01.2018; cited 2019 06.09.2019]. Available from: https://www.ipsos.com/nb-no/ipsos-some-tracker-q417.
42. Hansen BT, Kjaer SK, Arnheim-Dahlstrom L, Liaw KL, Jensen KE, Thomsen LT, et al. Human papillomavirus (HPV) vaccination and subsequent sexual behaviour: evidence from a large survey of Nordic women. Vaccine. 2014;32(39):4945–53. doi: 10.1016/j.vaccine.2014.07.025 25045810.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy