#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The association of brightness with number/duration in human newborns


Autoři: Cory D. Bonn aff001;  Maria-Eirini Netskou aff002;  Arlette Streri aff002;  Maria Dolores de Hevia aff002
Působiště autorů: Department of Psychology, University of British Columbia, Vancouver, BC, Canada aff001;  Integrative Neuroscience and Cognition Center (CNRS UMR 8002), Université Paris Descartes, Paris, France aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223192

Souhrn

Human neonates spontaneously associate changes in magnitude across the dimensions of number, length, and duration. Do these particular associations generalize to other pairs of magnitudes in the same way at birth, or do they reflect an early predisposition to expect specific relations between spatial, temporal, and numerical representations? To begin to answer this question, we investigated how strongly newborns associated auditory sequences changing in number/duration with visual objects changing in levels of brightness. We tested forty-eight newborn infants in one of three, bimodal stimulus conditions in which auditory numbers/durations increased or decreased from a familiarization trial to the two test trials. Auditory numbers/durations were paired with visual objects in familiarization that remained the same on one test trial but changed in luminance/contrast or shape on the other. On average, results indicated that newborns looked longer when changes in brightness accompanied the number/duration change as compared to no change, a preference that was most consistent when the brightness change was congruent with the number/duration change. For incongruent changes, this preference depended on trial order. Critically, infants showed no preference for a shape change over no shape change, indicating that infants likely treated brightness differently than a generic feature. Though this performance pattern is somewhat similar to previously documented associations, these findings suggest that cross-magnitude associations among number, length, and duration may be more specialized at birth, rather than emerge gradually from postnatal experience or maturation.

Klíčová slova:

Analysis of variance – Behavior – Infants – Neonates – Sensory perception – Syllables – Luminance – Speech signal processing


Zdroje

1. Streri A, Gentaz E. Cross-modal recognition of shape from hand to eyes in human newborns. Somatosensory & Motor Research. 2003;20(1):13–18. doi: 10.1080/0899022031000083799

2. Sann C, Streri A. Perception of object shape and texture in human newborns: evidence from cross‐modal transfer tasks. Developmental Science. 2007;10(3):399–410. doi: 10.1111/j.1467-7687.2007.00593.x 17444979

3. Lewkowicz DJ, Leo I, Simion F. Intersensory Perception at Birth: Newborns Match Nonhuman Primate Faces and Voices. Infancy. 2010;15(1):46–60. doi: 10.1111/j.1532-7078.2009.00005.x

4. Slater A, Quinn PC, Brown E, Hayes R. Intermodal perception at birth: Intersensory redundancy guides newborn infants’ learning of arbitrary auditory-visual pairings. Developmental Science. 1999;2(3):333–338. doi: 10.1111/1467-7687.00079

5. Bahrick LE, Lickliter R. Intersensory redundancy guides attentional selectivity and perceptual learning in infancy. Developmental Psychology. 2000;36(2):190–201. doi: 10.1037//0012-1649.36.2.190 10749076

6. Aldridge MA, Braga ES, Walton GE, Bower TGR. The intermodal representation of speech in newborns. Developmental Science. 1999;2(1):42–46. doi: 10.1111/1467-7687.00052

7. Izard V, Sann C, Spelke ES, Streri A. Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences. 2009;106(25):10382–10385. doi: 10.1073/pnas.0812142106

8. de Hevia MD, Izard V, Coubart A, Spelke ES, Streri A. Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences. 2014;111(13):4809–4813. doi: 10.1073/pnas.1323628111

9. De Corte BJ, Navarro VM, Wasserman EA. Non-cortical magnitude coding of space and time by pigeons. Current Biology. 2017;27(23):R1264–R1265. https://doi.org/10.1016/j.cub.2017.10.029 29207264

10. Merritt DJ, Casasanto D, Brannon EM. Do monkeys think in metaphors? Representations of space and time in monkeys and humans. Cognition. 2010;117(2):191–202. doi: 10.1016/j.cognition.2010.08.011 20846645

11. Bonn CD, Cantlon JF. The origins and structure of quantitative concepts. Cognitive neuropsychology. 2012;29(1-2):149–173. doi: 10.1080/02643294.2012.707122 22966853

12. Cai ZG, Wang R, Shen M, Speekenbrink M. Cross-dimensional magnitude interactions arise from memory interference. Cognitive Psychology. 2018;106:21–42. doi: 10.1016/j.cogpsych.2018.08.001 30165241

13. Pinel P, Piazza M, Le Bihan D, Dehaene S. Distributed and Overlapping Cerebral Representations of Number, Size, and Luminance during Comparative Judgments. Neuron. 2004;41(6):983–993. doi: 10.1016/s0896-6273(04)00107-2 15046729

14. Lourenco SF, Ayzenberg V, Lyu J. A general magnitude system in human adults: Evidence from a subliminal priming paradigm. Cortex. 2016;81:93–103. doi: 10.1016/j.cortex.2016.04.013 27179917

15. Borghesani V, de Hevia MD, Viarouge A, Pinheiro-Chagas P, Eger E, Piazza M. Processing number and length in the parietal cortex: Sharing resources, not a common code. Cortex. 2019;114:17–27. doi: 10.1016/j.cortex.2018.07.017 30219571

16. Bonn CD, Cantlon JF. Spontaneous, modality-general abstraction of a ratio scale. Cognition. 2017;169:36–45. https://doi.org/10.1016/j.cognition.2017.07.012 28806722

17. Casasanto D, Boroditsky L. Time in the mind: Using space to think about time. Cognition. 2008;106(2):579–593. doi: 10.1016/j.cognition.2007.03.004 17509553

18. Bottini R, Casasanto D. Space and time in the child’s mind: metaphoric or ATOMic? Frontiers in Psychology. 2013;4. doi: 10.3389/fpsyg.2013.00803 24204352

19. Srinivasan M, Carey S. The long and the short of it: On the nature and origin of functional overlap between representations of space and time. Cognition. 2010;116(2):217–241. https://doi.org/10.1016/j.cognition.2010.05.005 20537324

20. Lourenco SF, Longo MR. General magnitude representation in human infants. Psychological Science. 2010;21(6):873–881. doi: 10.1177/0956797610370158 20431048

21. de Hevia MD, Spelke ES. Number-Space Mapping in Human Infants. Psychological Science. 2010;21(5):653–660. doi: 10.1177/0956797610366091 20483843

22. de Hevia MD, Spelke ES. Not All Continuous Dimensions Map Equally: Number-Brightness Mapping in Human Infants. PLOS ONE. 2013;8(11):1–9. doi: 10.1371/journal.pone.0081241

23. de Hevia MD, Vanderslice M, Spelke ES. Cross-dimensional mapping of number, length and brightness by preschool children. PLOS ONE. 2012;7(4):e35530. doi: 10.1371/journal.pone.0035530 22536399

24. Bulf H, Macchi Cassia V, de Hevia MD. Are Numbers, Size and Brightness Equally Efficient in Orienting Visual Attention? Evidence from an Eye-Tracking Study. PLOS ONE. 2014;9(6):e99499. doi: 10.1371/journal.pone.0099499 24932753

25. Viarouge A, de Hevia MD. The role of numerical magnitude and order in the illusory perception of size and brightness. Frontiers in Psychology. 2013;4. doi: 10.3389/fpsyg.2013.00484 23908640

26. Gebuis T, van der Smagt MJ. Incongruence in number–luminance congruency effects. Attention, Perception, & Psychophysics. 2011;73(1):259–265. doi: 10.3758/s13414-010-0002-9

27. Bottini R, Guarino C, Casasanto D. A domain-specific mapping between time and nontemporal magnitude. Proceedings of the 35th Annual Meeting of the Cognitive Science Society. 2013; p. 6.

28. Coubart A, Izard V, Spelke ES, Marie J, Streri A. Dissociation between small and large numerosities in newborn infants. Developmental Science. 2013;17(1):11–22. doi: 10.1111/desc.12108 24267592

29. Adams RJ, Maurer D, Cashin HA. The influence of stimulus size on newborns’ discrimination of chromatic from achromatic stimuli. Vision Research. 1990;30(12):2023–2030. doi: 10.1016/0042-6989(90)90018-g 2288103

30. Slater A, Morison V, Rose D. Perception of shape by the new‐born baby. British Journal of Developmental Psychology. 1983;1(2):135–142. doi: 10.1111/j.2044-835X.1983.tb00551.x

31. Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means; 2018. Available from: https://CRAN.R-project.org/package=emmeans.

32. Kidd C, Piantadosi ST, Aslin RN. The Goldilocks Effect: Human Infants Allocate Attention to Visual Sequences That Are Neither Too Simple Nor Too Complex. PLOS ONE. 2012;7(5):e36399. doi: 10.1371/journal.pone.0036399 22649492

33. Gelman A. Analysis of variance—why it is more important than ever. Ann Statist. 2005;33(1):1–53. doi: 10.1214/009053604000001048

34. Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. vol. Analytical methods for social research. New York: Cambridge University Press; 2007.

35. Lefcheck JS. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution. 2016;7(5):573–579. doi: 10.1111/2041-210X.12512

36. Kruschke JK. Doing Bayesian Data Analysis: A Tutorial with R and BUGS. 1st ed. Orlando, FL, USA: Academic Press, Inc.; 2010.

37. Gelman A, Goodrich B, Gabry J, Ali I. R-squared for Bayesian regression models; 2017. Available from: http://www.stat.columbia.edu/~gelman/research/unpublished/bayes_R2.pdf.

38. Walsh V. A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences. 2003;7(11):483–488. 14585444

39. Bueti D, Walsh V. The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009;364(1525):1831–1840. doi: 10.1098/rstb.2009.0028

40. Stevens SS. Psychophysics. New Brunswick: Transaction Publishers; 1975.

41. Kording KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L. Causal inference in multisensory perception. PLOS ONE. 2007;2(9):1–10. doi: 10.1371/journal.pone.0000943


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Současné pohledy na riziko v parodontologii
nový kurz
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#