Understanding spatial patterns of soils for sustainable agriculture in northern Ethiopia’s tropical mountains
Autoři:
Jan Nyssen aff001; Sander Tielens aff002; Tesfamichael Gebreyohannes aff003; Tigist Araya aff004; Kassa Teka aff004; Johan Van de Wauw aff002; Karen Degeyndt aff002; Katrien Descheemaeker aff005; Kassa Amare aff003; Mitiku Haile aff004; Amanuel Zenebe aff004; Neil Munro aff006; Kristine Walraevens aff007; Kindeya Gebrehiwot aff004; Jean Poesen aff002; Amaury Frankl aff001; Alemtsehay Tsegay aff009; Jozef Deckers aff002
Působiště autorů:
Department of Geography, Ghent University, Gent, Belgium
aff001; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
aff002; Department of Earth Sciences, Mekelle University, Mekelle, Ethiopia
aff003; Department of Land Resources Management and Environmental Protection, Mekelle University, Mekelle, Ethiopia
aff004; Department of Plant Production Systems, Wageningen University, Wageningen, The Netherlands
aff005; Institute of Climate and Society, Mekelle University, Mekelle, Ethiopia
aff006; Department of Geology, Ghent University, Gent, Belgium
aff007; Research Foundation—Flanders (FWO), Brussels, Belgium
aff008; Department of Dryland Crop and Horticultural Sciences, Mekelle University, Mekelle, Ethiopia
aff009
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224041
Souhrn
Knowledge of the geographical distribution of soils is indispensable for policy and decision makers to achieve the goal of increasing agricultural production and reduce poverty, particularly in the Global South. A study was conducted to better understand the soilscapes of the Giba catchment (900–3300 m a.s.l.; 5133 km2) in northern Ethiopia, so as to sustain soil use and management. To characterise the chemical and physical properties of the different benchmark soils and to classify them in line with the World Reference Base of Soil Resources, 141 soil profile pits and 1381 soil augerings at representative sites were analysed. The dominant soil units identified are Leptosol and bare rock (19% coverage), Vertic Cambisol (14%), Regosol and Cambisol (10%), Skeletic/Leptic Cambisol and Regosol (9%), Rendzic Leptosol (7%), Calcaric/Calcic Vertisol (6%), Chromic Luvisol (6%) and Chromic/Pellic Vertisol (5%). Together these eight soil units cover almost 75% of the catchment. Topography and parent material are the major influencing factors that explain the soil distribution. Besides these two factors, land cover that is strongly impacted by human activities, may not be overlooked. Our soil suitability study shows that currently, after thousands of years of agricultural land use, a new dynamic equilibrium has come into existence in the soilscape, in which ca. 40% of the catchment is very suitable, and 25% is moderately suitable for agricultural production. In view of such large suitable areas, the Giba catchment has a good agricultural potential if soil erosion rates can be controlled, soil fertility (particularly nitrogen) increased, available water optimally used, and henceforth crop yields increased.
Klíčová slova:
Agricultural soil science – Basalt – Clay mineralogy – Crops – Erosion – Soil chemistry – Valleys – Paleopedology
Zdroje
1. van der Veen A, Tagel Gebrehiwot. Effect of Policy Interventions on Food Security in Tigray, Northern Ethiopia. Ecology and Society. 2011;16(1):18.
2. Pender J, Berhanu Gebremedhin. Determinants of agricultural and land management practices and impacts on crop production and household income in the highlands of Tigray, Ethiopia. Journal of African Economies. 2007;17(3):395–450.
3. Nyssen J, Poesen J, Moeyersons J, Deckers J, Mitiku Haile, Lang A. Human impact on the environment in the Ethiopian and Eritrean highlands—a state of the art. Earth-Science Reviews. 2004;64(3–4):273–320. doi: 10.1016/S0012-8252(03)00078-3
4. Blond N, Jacob-Rousseau N, Callot Y. Terrasses alluviales et terrasses agricoles. Première approche des comblements sédimentaires et de leurs aménagements agricoles depuis 5000 av. n. è. à Wakarida (Éthiopie). Géomorphologie: Relief, Processus, Environnement. 2018;24(3):277–300.
5. Teketay Demel. Deforestation, wood famine, and environmental degradation in Ethiopia's highland ecosystems: urgent need for action. Northeast African Studies. 2001;8:53–76.
6. Nyssen J, Frankl A, Amanuel Zenebe, Deckers J, Poesen J. Land management in the northern Ethiopian highlands: local and global perspectives; past, present and future. Land Degradation & Development. 2015;26(7):759–64.
7. Nyssen J, Veyret-Picot M, Poesen J, Moeyersons J, Mitiku Haile, Deckers J, et al. The effectiveness of loose rock check dams for gully control in Tigray, Northern Ethiopia. Soil Use and Management. 2004;20:55–64. doi: 10.1111/j.1475-2743.2004.tb00337.x
8. Nyssen J, Poesen J, Desta Gebremichael, Vancampenhout K, D'Aes M, Gebremedhin Yihdego, et al. Interdisciplinary on-site evaluation of stone bunds to control soil erosion on cropland in Northern Ethiopia. Soil and Tillage Research. 2007;94(1):151–63.
9. Tewodros Gebreegziabher, Nyssen J, Govaerts B, Fekadu Getnet, Mintesinot Behailu, Mitiku Haile, et al. Contour furrows for in situ soil and water conservation, Tigray, Northern Ethiopia. Soil and Tillage Research. 2009;103(2):257–64. doi: 10.1016/j.still.2008.05.021
10. Tesfay Araya, Cornelis WM, Nyssen J, Govaerts B, Tewodros Gebregziabher, Tigist Oicha, et al. Effects of conservation agriculture on runoff, soil loss and crop yield under rain fed conditions in Tigray, Northern Ethiopia. Soil & Tillage Research. 2011;27:404–14.
11. Alemtsehay Tsegay, Vanuytrecht E, Berhanu Abrha, Deckers J, Kindeya Gebrehiwot, Raes D. Sowing and irrigation strategies for improving rainfed tef (Eragrostis tef (Zucc.) Trotter) production in the water scarce Tigray region, Ethiopia. Agricultural Water Management. 2015;150:81–91.
12. Ngatunga EL, Cools N, Dondeyne S, Deckers JA, Merckx R. Buffering capacity of cashew soils in South Eastern Tanzania. Soil Use and Management. 2001;17(3):155–62. doi: 10.1111/j.1475-2743.2001.tb00022.x
13. Jarvis MG, Hedges MR. Use of Soil Maps to Predict the Incidence of Corrosion and the Need for Iron Mains Renewal. Water and Environment Journal. 1994;8(1):68–75. doi: 10.1111/j.1747-6593.1994.tb01094.x
14. Vitharana UW, Van Meirvenne M, Simpson D, Cockx L, De Baerdemaeker J. Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area. Geoderma. 2008;143(1–2):206–15.
15. Nzeyimana I, Hartemink AE, Geissen V. GIS-based multi-criteria analysis for Arabica coffee expansion in Rwanda. PloS one. 2014;9(10):e107449. doi: 10.1371/journal.pone.0107449 25299459
16. Hunting Technical Services. Tigrai Rural Development Study, Annex 1, Land and vegetation resources. Hemel Hempstead (G.B.): Hunting Technical Services Ltd; 1976. 419 p, 15 maps. p.
17. Rabia AH, Figueredo H, Huong T, Lopez B, Hishe S, Alessandro V. Land suitability analysis for policy making assistance: a GIS based land suitability comparison between surface and drip irrigation systems. International Journal of Environmental Science and Development. 2013;4(1):1–6.
18. IAO. Land evaluation in Kilte Awulaelo—Tigray Region, Ethiopia. Firenze, Italy: Ministry of Foreign Affairs, Istituto Agronomico per l'Oltremare; 2009. 231 p.
19. IAO. Land evaluation in Enderta District—Tigray Region, Ethiopia. Firenze, Italy: Ministry of Foreign Affairs, Istituto Agronomico per l'Oltremare; 2008. 229 p.
20. IAO. Land evaluation in the May Gabat watershed Enderta-Hintalo Wejirat Districts (Northern Ethiopia). Firenze, Italy: Ministry of Foreign Affairs, Istituto Agronomico per l'Oltremare; 2014. 229 p.
21. Yeshi Hadgu. GIS-based land suitability evaluation for irrigation in the Semha watershed (Enderta Woreda, Tigray, Ethiopia). MSc dissertation. Firenze: Universià degli studi Firenze, Scuola di Agraria; 2016. 138 p.
22. FAO. Ethiopia—geomorphology & soils map and legend—assistance to land-use planning: FAO Ethiopia; 1983.
23. Batjes NH. ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid (ver. 1.2). Report 2012/01. Wageningen, The Netherlands: ISRIC—World Soil Information; 2012.
24. ESDAC. Soil Atlas of Africa and its associated Soil Map (data): European Soil Data Centre (ESDAC), European Commission, Joint Research Centre; 2014.
25. Dewitte O, Jones A, Spaargaren O, Breuning-Madsen H, Brossard M, Dampha A, et al. Harmonisation of the soil map of Africa at the continental scale. Geoderma. 2013;211–212:138–53. doi: 10.1016/j.geoderma.2013.07.007
26. Brunner M. A national soil model of Ethiopia. A geostatistical approach to create a national soil map of Ethiopia on the basis of an SRTM 90 DEM and SOTWIS soil data. (MSc thesis). Bern, Switzerland: University of Bern; 2012. 126 p.
27. Hengl T, Leenaars JG, Shepherd KD, Walsh MG, Heuvelink GB, Tekalign Mamo, et al. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutr Cycl Agroecosyst. 2017;109(1):77–102.
28. MoA ATA. Soil Fertility Status and Fertilizer Recommendation Atlas for Tigray Regional State, Ethiopia. Addis Ababa: Ministry of Agriculture, Agricultural Transformation Agency; 2014. 91 p.
29. Nyssen J, Birhanu Biruk, Zbelo Tesfamariam, Frankl A, Biadgilgn Demissie, Tesfaalem Gebreyohannes, et al. Geographical determinants of inorganic fertiliser sales and of resale prices in north Ethiopia. Agriculture, Ecosystems & Environment. 2017;249:256–68.
30. Virgo KJ, Munro RN. Soil and erosion features of the Central Plateau region of Tigrai, Ethiopia. Geoderma. 1978;20:131–57.
31. Tesfamichael Gebreyohannes, De Smedt F, Miruts Hagos, Solomon Gebresilassie, Kassa Amare, Kurkura Kabeto, et al. Large-scale geological mapping of the Geba basin, northern Ethiopia. Mekelle, Ethiopia: VLIR-Mekelle University IUC Programme; 2010.
32. Nyssen J, Poesen J, Moeyersons J, Deckers J, Mitiku Haile. Processes and rates of rock fragment displacement on cliffs and scree slopes in an amba landscape, Ethiopia. Geomorphology. 2006;81(3–4):265–75.
33. Coltorti M, Dramis F, Ollier C. Planation surfaces in northern Ethiopia. Geomorphology. 2007;89(3–4):287–96.
34. Tesfamichael Gebreyohannes, De Smedt F, Walraevens K, Solomon Gebresilassie, Abdelwasie Hussien, Miruts Hagos, et al. Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia. Journal of Hydrology. 2013;499:110–23.
35. Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences. 2007;11(5):1633–44. PubMed PMID: ISI:000251516100009.
36. Jacob M, Frankl A, Mitiku Haile, Zwertvaegher A, Nyssen J. Assessing spatio-temporal rainfall variability in a tropical mountain area (Ethiopia) using NOAAs Rainfall Estimates. International Journal of Remote Sensing. 2013;34(23):8305–21.
37. Araya Alemie, Keesstra S, Stroosnijder L. A new agro-climatic classification for crop suitability zoning in northern semi-arid Ethiopia. Agricultural and Forest Meteorology. 2010;150(7–8):1057–64.
38. FAO. Report on the agro-ecological zones project. Vol 1: Results for Africa. Roma, Italy: FAO; 1978. 158 p.
39. Amanuel Zenebe. Assessment of spatial and temporal variability of river discharge, sediment yield and sediment-fixed nutrient export in Geba river catchment, northern Ethiopia. Leuven: Department of Earth and Environmental Sciences, K.U.Leuven; 2009. 346 p.
40. Etefa Guyassa, Frankl A, Lanckriet S, Biadgilgn Demissie, Gebreyohannes Zenebe, Amanuel Zenebe, et al. Changes in land use/cover mapped over 80 years in the Highlands of Northern Ethiopia. Journal of Geographical Sciences. 2018;28(10):1538–63.
41. Tigist Araya. Soil landscape relationship modeling of the Atsbi Horst, Tigray, Ethiopia. Unpub. MSc thesis. Mekelle, Ethiopia: Department of Land Resources Management and Environmental Protection, Mekelle University; 2006.
42. De Geyndt K. Bodemkartering ten behoeve van bodemconserveringsonderzoek in Hagere Selam, Ethiopië. Unpub. M.Sc. thesis. Leuven, Belgium: Department of Land Management, University of Leuven; 2001.
43. Nyssen J, Naudts J, De Geyndt K, Mitiku Haile, Poesen J, Moeyersons J, et al. Soils and land use in the Tigray highlands (Northern Ethiopia). Land Degradation & Development. 2008;19(3):257–74. doi: 10.1002/ldr.840
44. Descheemaeker K, Nyssen J, Rossi J, Poesen J, Mitiku Haile, Moeyersons J, et al. Sediment deposition and pedogenesis in exclosures in the Tigray Highlands, Ethiopia. Geoderma. 2006;132:291–314. doi: 10.1016/j.geoderma.2005.04.027
45. Kassa Teka, Nyssen J, Nurhusen Teha, Mitiku Haile, Deckers J. Soil, land use and landform relationship in the Precambrian lowlands of northern Ethiopia. Catena. 2015;131:84–91.
46. Van De Wauw J. Soil-landscape relationships in the basalt-dominated highlands of Tigray, Ethiopia. Unpub. M.Sc. thesis. Leuven, Belgium: Department of Land Management, K.U. Leuven; 2005.
47. Van de Wauw J, Baert G, Moeyersons J, Nyssen J, De Geyndt K, Nurhussen Taha, et al. Soil-landscape relationships in the basalt-dominated highlands of Tigay, Ethiopia. Catena. 2008;75:117–27.
48. Tesfu Woldegerima. Soil landscape relationship modelling: A tool for identifying and mapping soils of the watershed (A case study of the midland sandstone dominated soils of Tsenkaniet watershed). Unpublished MSc Thesis. Mekelle, Ethiopia: Mekelle University; 2006.
49. Hunting Technical Services. Central Tigre Development Study–Tigre Province Ethiopia, Working Paper I: Soils and land classification. Hemel Hempstead (U.K.): Hunting Technical Services Ltd; 1975. 64 p.
50. Tielens S. Towards a soil map of the Geba catchment using benchmark soils. MSc thesis. Leuven and Brussels, Belgium: KULeuven and VUB; 2012.
51. Blume H-P, Stahr K, Leinweber P. Bodenkundliches Praktikum: Eine Einführung in pedologisches Arbeiten für Ökologen, Land-und Forstwirte, Geo-und Umweltwissenschaftler: Springer-Verlag; 2011.
52. Zobeck TM. Rapid soil particle size analyses using laser diffraction. Applied Engineering in Agriculture. 2004;20(5):633.
53. Buurman P, Pape T, Reijneveld J, De Jong F, Van Gelder E. Laser-diffraction and pipette-method grain sizing of Dutch sediments: correlations for fine fractions of marine, fluvial, and loess samples. Netherlands Journal of Geosciences. 2001;80(2):49–57.
54. Fisher P, Aumann C, Chia K, O'Halloran N, Chandra S. Adequacy of laser diffraction for soil particle size analysis. PloS one. 2017;12(5):e0176510. doi: 10.1371/journal.pone.0176510 28472043
55. Pieri L, Bittelli M, Pisa PR. Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils. Geoderma. 2006;135:118–32.
56. Kirkham MB. Chapter 10—Field Capacity, Wilting Point, Available Water, and the Nonlimiting Water Range. In: Kirkham MB, editor. Principles of Soil and Plant Water Relations (Second Edition). Boston: Academic Press; 2014. p. 153–70.
57. van Reeuwijk LP. Procedures for soil analysis. Wageningen, The Netherlands: International Soil Reference and Information Centre (ISRIC); 2002.
58. Banderis A, Barter D, Henderson K. The use of polyacrylamide to replace carbon in the determination of ‘Olsen’s’ extractable phosphate in soil. Journal of Soil Science. 1976;27(1):71–4.
59. Geraedts K, Maes A. The lanthanum precipitation method. Part 1: A new method for technetium (IV) speciation in humic rich natural groundwater. Chemosphere. 2008;73(4):484–90. doi: 10.1016/j.chemosphere.2008.06.041 18682308
60. Zhang L, Wan L, Chang N, Liu J, Duan C, Zhou Q, et al. Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide. Journal of Hazardous Materials. 2011;190(1–3):848–55. doi: 10.1016/j.jhazmat.2011.04.021 21530079
61. Dohrmann R. Cation exchange capacity methodology III: correct exchangeable calcium determination of calcareous clays using a new silver–thiourea method. Applied Clay Science. 2006;34(1–4):47–57.
62. Hazelton P, Murphy B. Interpreting soil test results: what do all the numbers mean? Australia: CSIRO Publishing; 2007. 160 p.
63. Juo AS, Franzluebbers K, Backman CR. Tropical soils: properties and management for sustainable agriculture. Oxford (UK): Oxford University Press; 2003. 281 p.
64. Getachew Alemu, Wondimu Bayu. Effects of farmyard manure and combined N and P fertilizer on sorghum and soil characteristics in northeastern Ethiopia. Journal of sustainable agriculture. 2005;26(2):23–41.
65. Amare Haileslassie. Soil nutrient stocks and fluxes under smallholders’ mixed farming system in the central highlands of Ethiopia: research experiences from the Galessa and Gare areas. In: Kindu Mekonnen, Glatzel G, Habermann B, editors. Indigenous tree and shrub species for environmental protection and agricultural productivity; Holetta Agricultural Research Centre, Ethiopia: Commission for Development Studies, Austrian Academy of Sciences; 2006. p. 62–75.
66. Girmay Gebresamuel, Singh BR, Mitiku Haile, Borresen T, Lal R. Carbon stocks in Ethiopian soils in relation to land use and soil management. Land Degradation & Development. 2008;19(4):351–67.
67. Schumacher BA. Methods for the determination of total organic carbon (TOC) in soils and sediments. Las Vegas, NV, USA 2002. 25 p.
68. NRCS. Soil quality resource concerns: available water capacity. USA: USDA, Natural Resources Conservation Service; 1998. 2 p.
69. Paruelo J, Aguiar M, Golluscio R. Soil water availability in the Patagonian arid steppe: gravel content effect. Arid Land Research and Management. 1988;2(1):67–74.
70. Descheemaeker K, Nyssen J, Poesen J, Raes D, Haile M, Muys B, et al. Runoff on slopes with restoring vegetation: A case study from the Tigray highlands, Ethiopia. Journal of Hydrology. 2006;331(1–2):219–41.
71. Olness A, Archer D. Effect of organic carbon on available water in soil. Soil Science. 2005;170(2):90–101.
72. Jahn R, Blume H, Asio V, Spaargaren O, Schad P. Guidelines for soil description (4th ed.). Roma, Italy: FAO; 2006.
73. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, first update 2015. Roma, Italy: FAO; 2015.
74. Mulugeta Alene, Ruffini R, Sacchi R. Geochemistry and geotectonic setting of Neoproterozoic rocks from northern Ethiopia (Arabian-Nubian Shield). Gondwana Research. 2000;3(3):333–47.
75. Swanson-Hysell NL, Maloof AC, Condon DJ, Jenkin GR, Mulugeta Alene, Tremblay MM, et al. Stratigraphy and geochronology of the Tambien Group, Ethiopia: evidence for globally synchronous carbon isotope change in the Neoproterozoic. Geology. 2015;43(4):323–6.
76. Chen T. The Mozambique Belt: the link between East and West Gondwana in the Neoproterozoic and possible connection with the Trans-Antarctic Mountains. Gondwana Research. 2001;4(4):594–5.
77. Tarekegn Tadesse, Hoshino M, Sawada Y. Geochemistry of low-grade metavolcanic rocks from the Pan-African of the Axum area, northern Ethiopia. Precambrian Research. 1999;96(1–2):101–24.
78. Miller NR, Mulugeta Alene, Sacchi R, Stern RJ, Conti A, Kröner A, et al. Significance of the Tambien Group (Tigrai, N. Ethiopia) for snowball Earth events in the Arabian–Nubian shield. Precambrian Research. 2003;121(3–4):263–83.
79. Bussert R, Schrank E. Palynological evidence for a latest Carboniferous-Early Permian glaciation in Northern Ethiopia. Journal of African Earth Sciences. 2007;49(4–5):201–10.
80. Sacchi R, Mulugeta Alene, Barbieri M, Conti A. On the Palaeozoic Tillite of the Adigrat Group (Tigrai, Ethiopia). Periodico di Mineralogia. 2007;76(2–3):241–51.
81. Kumpulainen R. The Ordovician glaciation in Eritrea and Ethiopia, NE Africa. In: Hambrey MJ, Christoffersen P, Glasser NF, Hubbard B, editors. Glacial Sedimentary Processes and Products: John Wiley & Sons; 2009. p. 321–42.
82. Bussert R. Exhumed erosional landforms of the Late Palaeozoic glaciation in northern Ethiopia: Indicators of ice-flow direction, palaeolandscape and regional ice dynamics. Gondwana Research. 2010;18(2–3):356–69.
83. Alemu Tilahun, Fassil Kebede, Yamoah C, Erens H, Mujinya B, Verdoodt A, et al. Quantifying the masses of Macrotermes subhyalinus mounds and evaluating their use as a soil amendment. Agriculture, Ecosystems & Environment. 2012;157:54–9.
84. Mitiku Haile, Berhanu Gebremedhin, Amare Belay. The status of soil fertility in Tigray. In: Berhanu Gebremedhin, Pender J, Ehui S, Mitiku Haile, editors. Policies for sustainable land management in the highlands of Tigray, northern Ethiopia. EPTD Workshop Summary. Washington, DC, USA; Nairobi, Kenya; Mekelle, Ethiopia: International Food Policy Research Institute (IFPRI); International Livestock Research Institute (ILRI); Mekelle University; 2002.
85. Driessen P, Deckers J, Spaargaren O, Nachtergaele F. Lecture notes on the major soils of the world: Food and Agriculture Organization (FAO); 2000.
86. Moeyersons J, Van Den Eeckhaut M, Nyssen J, Gebreyohannes T, Van de Wauw J, Hofmeister J, et al. Mass movement mapping for geomorphological understanding and sustainable development: Tigray, Ethiopia. Catena. 2008;75(1):45–54. doi: 10.1016/j.catena.2008.04.004
87. Gustavson TC. Buried Vertisols in lacustrine facies of the Pliocene Fort Hancock Formation, Hueco Bolson, West Texas and Chihuahua, Mexico. Geological Society of America Bulletin. 1991;103(4):448–60.
88. Coulombe CE, Dixon J, Wilding L. Mineralogy and chemistry of Vertisols. Developments in Soil Science. 1996;24:115–200.
89. Van Ranst E, Alemayehu Regassa, Dumon M, Cornelis J-T, Deckers J, editors. On the origin of Planosols–the process of ferrolysis revisited. 19th World congress of Soil Science: Soil solutions for a changing world; 2010; Brisbane, Australia: International Union of Soil Sciences (IUSS).
90. Tesfaye Kidane, Bachtadse V, Mulugeta Alene. Quaternary remagnetization of the Neoproterozoic limestone of Negash Synclinorium (Arabian–Nubian Shield, northern Ethiopia): With implications of no paleomagnetic testing for the proposed Snowball Earth events. Physics of the Earth and Planetary Interiors. 2014;235:1–12.
91. Mulugeta Degie. Pedogenetic significance of Enticho sandstone as parent material for soil formation in the landscapes of Rubafeleg and Tsenkaniet catchments, Eastern Tigray. MSc Dissertation. Mekelle, Ethiopia: Mekelle University; 2007.
92. Bosellini A, Russo A, Fantozzi PL, Getaneh A, Solomon T. The Mesozoic succession of the Mekele outlier (Tigre Province, Ethiopia). Memorie di Scienze Geologiche. 1997;49:95–116.
93. Bussert R, Nyssen J. Rock-Hewn Sandstone Churches and Man-Made Caves in and Around Dogu’a Tembien. In: Nyssen J, Jacob M, Frankl A, editors. Geo-trekking in Ethiopia’s Tropical Mountains. GeoGuide. Cham (CH): Springer; 2019. p. 121–37.
94. Arkin Y, Beyth M, Dow D, Levitte D, Temesgen Haile, Tsegaye Hailu. Geological map of Mekele sheet area ND 37–11, Tigre province, 1:250.000. Addis Ababa: Imperial Ethiopian Governement, Ministry of Mines, Geological survey; 1971.
95. Merla G, Abbate E, Azzaroli A, Bruni P, Canuti P, Fazzuoli M, et al. A geological map of Ethiopia and Somalia (1973) 1:2.000.000 and comment. Firenze, Italy: University of Florence; 1979.
96. Walraevens K, Tesfamichael Gebreyohannes, Kassa Amare, Baert R, Ronsse S, Van Hulle L, et al. Water balance components for sustainability assessment of groundwater-dependent agriculture: example of the Mendae plain (Tigray, Ethiopia). Land Degrad Develop. 2015;26(7):725–36.
97. Williams M, Williams F. Evolution of the Nile basin. In: Williams M, Faure H, editors. The Sahara and the Nile Quaternary Environments and Prehistoric Occupation in Northern Africa. Rotterdam: Balkema; 1980. p. 207–24.
98. Hadgu Hishe, Kidane Giday, Mulugeta Neka, Teshome Soromessa, Van Orshoven J, Muys B. Detection of Olea europaea subsp. cuspidata and Juniperus procera in the dry Afromontane forest of northern Ethiopia using subpixel analysis of Landsat imagery. Journal of Applied Remote Sensing. 2015;9(1):095975.
99. Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, et al. Flood and shield basalts from Ethiopia: magmas from the African superswell. Journal of Petrology. 2004;45:793–834.
100. Miruts Hagos, Kassa Amare, Koeberl C, Nyssen J. The Volcanic Rock Cover of the Dogu’a Tembien Massif. In: Nyssen J, Jacob M, Frankl A, editors. Geo-trekking in Ethiopia’s Tropical Mountains. GeoGuide. Cham (CH): Springer Nature; 2019. p. 139–51.
101. Merla G, Minucci E. Missione geologica nel Tigrai. Roma: Reale Accademia d’Italia; 1938.
102. Vandecasteele I, Nyssen J, Clymans W, Moeyersons J, Martens K, Van Camp M, et al. Hydrogeology and groundwater flow in a basalt-capped Mesozoic sedimentary series of the Ethiopian highlands. Hydrogeology journal. 2011;19(3):641–50.
103. Nyssen J, Poesen J, Descheemaeker K, Nigussie Haregeweyn, Mitiku Haile, Moeyersons J, et al. Effects of region-wide soil and water conservation in semi-arid areas: the case of northern Ethiopia. Zeitschrift für Geomorphologie. 2008;52:291–315. doi: 10.1016/j.catena.2008.04.009
104. Van Den Eeckhaut M, Moeyersons J, Nyssen J, Amanuel Zenebe, Poesen J, Mitiku Haile, et al. Spatial patterns of old, deep-seated landslides: A case-study in the northern Ethiopian highlands. Geomorphology. 2009;105(3–4):239–52.
105. Ford T, Pedley H. A review of tufa and travertine deposits of the world. Earth-Science Reviews. 1996;41(3–4):117–75.
106. Dramis F, Umer M, Calderoni G, Mitiku Haile. Holocene climate phases from buried soils in Tigray (northern Ethiopia): comparison with lake level fluctuations in the Main Ethiopian Rift. Quat Res. 2003;60(3):274–83. doi: 10.1016/s0033-5894(03)00107-8
107. Berakhi O, Brancaccio L, Calderoni G, Coltorti M, Dramis F, Umer MM. The Mai Maikden sedimentary sequence: a reference point for the environmental evolution of the Highlands of Northern Ethiopia. Geomorphology. 1998;23(2–4):127–38. doi: 10.1016/s0169-555x(97)00108-6
108. Moeyersons J, Nyssen J, Poesen J, Deckers J, Mitiku Haile. Age and backfill/overfill stratigraphy of two tufa dams, Tigray Highlands, Ethiopia: Evidence for Late Pleistocene and Holocene wet conditions. Palaeogeography, Palaeoclimatology, Palaeoecology. 2006;230(1–2):165–81. doi: 10.1016/j.palaeo.2005.07.013
109. Wielemaker W, De Bruin S, Epema G, Veldkamp A. Significance and application of the multi-hierarchical landsystem in soil mapping. Catena. 2001;43(1):15–34.
110. Bui EN. Soil survey as a knowledge system. Geoderma. 2004;120(1–2):17–26.
111. Bornand M, Legros J-P. Principes de la cartographie des pédopaysages dans les Alpes. Écologie. 1998;29(1/2):49.
112. Laroche B, Arrouays D, Olivier D, Lecerf N. Essai de cartographie numérique des pédopaysages à 1/250 000 dans les départements de l'Aube et de la Marne: Enseignements, limites et perspectives. 2011.
113. Scull P, Franklin J, Chadwick O, McArthur D. Predictive soil mapping: a review. Progress in Physical Geography. 2003;27(2):171–97.
114. Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GB, Ribeiro E, et al. SoilGrids1km—global soil information based on automated mapping. PloS one. 2014;9(8):e105992. doi: 10.1371/journal.pone.0105992 25171179
115. Sanchez PA, Palm CA, Buol SW. Fertility capability soil classification: a tool to help assess soil quality in the tropics. Geoderma. 2003;114(3–4):157–85.
116. Sys C, Van Ranst E, Debaveye J. Land Evaluation. Part I: principles in land evaluation and crop production calculations. Brussels, Belgium: General Administration for Development Cooperation; 1991.
117. Sys C, Van Ranst E, Debaveye J. Land Evaluation. Part II: methods in land evaluation. Brussels, Belgium: General Administration for Development Cooperation; 1991.
118. FAO. A Framework for Land Evaluation. Roma, Italy: FAO; 1976.
119. Deckers J, Tielens S, De Geyndt K, Van de Wauw J, Mitiku Haile, Poesen J, et al. Understanding Soil Spatial Patterns for Sustainable Development. In: Nyssen J, Jacob M, Frankl A, editors. Geo-trekking in Ethiopia’s Tropical Mountains. GeoGuide. Cham (CH): Springer Nature; 2019. p. 361–72.
120. Koohafkan P, Nachtergaele F, Antoine J. Use of agro-ecological zones and resource management domains for sustainable management of African wetlands. Wetland Characterization and Classification for Sustainable Agricultural Development. Harare, Zimbabwe: FAO/SAFR; 1998.
121. Moeyersons J, Nyssen J, Deckers J, Mitiku Haile, Poesen J. Geomorphic Processes in Late-Pleistocene and Holocene Environments. In: Nyssen J, Jacob M, Frankl A, editors. Geo-trekking in Ethiopia’s Tropical Mountains. GeoGuide. Cham (CH): Springer Nature; 2019. p. 179–93.
122. Poesen JW, Torri D, Bunte K. Effects of rock fragments on soil erosion by water at different spatial scales—a review. Catena. 1994;23(1–2):141–66. PubMed PMID: ISI:A1994PJ57200010.
123. Nyssen J, Poesen J, Moeyersons J, Lavrysen E, Mitiku Haile, Deckers J. Spatial distribution of rock fragments in cultivated soils in northern Ethiopia as affected by lateral and vertical displacement processes. Geomorphology. 2002;43(1–2):1–16.
124. Nyssen J, Mitiku Haile, Poesen J, Deckers J, Moeyersons J. Removal of rock fragments and its effect on soil loss and crop yield, Tigray, Ethiopia. Soil Use Manag 2001;17:179–87.
125. Kirkby M. A conceptual model for physical and chemical soil profile evolution. Geoderma. 2018;331:121–30.
126. Willgoose G. Principles of soilscape and landscape evolution: Cambridge University Press; 2018.
127. Wall G, Coote D, Pringle E, Shelton I. RUSLEFAC—Revised universal soil loss equation for application in Canada: A handbook for estimating soil loss from water erosion in Canada. Ottawa: Agriculture and Agri-Food Canada; 2002. 117 p.
128. Hurni H. Soil formation rates in Ethiopia (with scale 1: 1,000,000). Roma, Italy: FAO; 1983.
129. Nigussie Haregeweyn, Poesen J, Nyssen J, Govers G, Verstraeten G, de Vente J, et al. Sediment yield variability in Northern Ethiopia: a quantitative analysis of its controlling factors. Catena. 2008;75(1):65–76.
130. Nyssen J, Clymans W, Poesen J, Vandecasteele I, De Baets S, Nigussie Haregeweyn, et al. How soil conservation affects the catchment sediment budget—a comprehensive study in the north Ethiopian highlands. Earth Surface Processes and Landforms. 2009;34:1216–33. doi: 10.1002/esp.1805
131. Aerts R, Nyssen J, Mitiku Haile. On the difference between "exclosures" and "enclosures" in ecology and the environment. Journal of Arid Environments. 2009;73:762–3.
132. World Bank. TheGlobalEconomy.com; 2019.
133. Munro RN, Teweldeberhan Woldegerima, Berhane Hailu, Amanuel Zenebe, Gebremedhin Z, Abrha Hailemichael, et al. A History of Soil and Water Conservation in Tigray. In: Nyssen J, Jacob M, Frankl A, editors. Geo-trekking in Ethiopia’s Tropical Mountains. Cham (CH): Springer Nature; 2019. p. 477–93.
134. Tigist Oicha, Cornelis W, Verplancke H, Nyssen J, Deckers J, Mintesinot Behailu, et al. Short-term effects of conservation agriculture on Vertisols under tef (Eragrostis tef (Zucc.) Trotter) in the northern Ethiopian highlands. Soil & Tillage Research. 2010;106:294–302. doi: 10.1016/j.still.2009.12.004
135. Berhane Grum, Kifle Woldearegay, Hessel R, Baartman JE, Abdulkadir M, Yazew E, et al. Assessing the effect of water harvesting techniques on event-based hydrological responses and sediment yield at a catchment scale in northern Ethiopia using the Limburg Soil Erosion Model (LISEM). Catena. 2017;159:20–34.
136. Gebremeskel Kassa, Teka Kassa, Birhane Emiru, Negash Emnet. The role of integrated watershed management on soil-health in northern Ethiopia. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science. 2019:1–7.
137. Gebremeskel G, Gebremicael T, Girmay A. Economic and environmental rehabilitation through soil and water conservation, the case of Tigray in northern Ethiopia. Journal of Arid Environments. 2018;151:113–24.
138. Mulubrhan Balehegn, Mitiku Haile, Fu C, Liang W. Ecosystem-Based Adaptation in Tigray, Northern Ethiopia: A Systematic Review of Interventions, Impacts, and Challenges. In: Leal Filho W, editor. Handbook of Climate Change Resilience. Cham (CH): Springer Nature; 2019. p. 1–45.
139. Wuletawu Abera, Lulseged Tamene, Degefie Tibebe, Zenebe Adimassu, Habtemariam Kassa, Habtamu Hailu, et al. Characterizing and evaluating the impacts of national land restoration initiatives on ecosystem services in Ethiopia. Land Degradation & Development. 2019;in press.
140. Tesfay Araya, Cornelis WM, Nyssen J, Govaerts B, Fekadu Getnet, Bauer H, et al. Medium-term effects of conservation agriculture based cropping systems for sustainable soil and water management and crop productivity in the Ethiopian highlands. Field Crops Research. 2012;132:53–62. doi: 10.1016/j.fcr.2011.12.009
141. Dondeyne S, Emmanuel L, Deckers JA. Mr Napite's botanical knowledge: bridging farmers' and scientists' insights during participatory research. Indilinga African Journal of Indigenous Knowledge Systems. 2003;2(2):45–57.
142. FAO. Aquacrop version 3.1 plus, reference manual, chapter 1. Roma, Italy: FAO; 2011.
143. Van Gaelen H, Alemtsehay Tsegay, Delbecque N, Shrestha N, Garcia M, Fajardo H, et al. A semi-quantitative approach for modelling crop response to soil fertility: evaluation of the AquaCrop procedure. The Journal of Agricultural Science. 2015;153(7):1218–33.
144. Sanginga N, Woomer PL. Integrated soil fertility management in Africa: principles, practices, and developmental process. Nairobi: CIAT; 2009. 263 p.
145. Giller KE. Nitrogen fixation in tropical cropping systems. Wallingford, U.K.: CAB International; 2001.
146. Willey R, Natarajan M, Reddy M, Rao M, Nambiar P, Kannaiyan J, et al. Intercropping studies with annual crops. In: Ciba Foundation, editor. Better crop for food. London, U.K.: Pitman; 1983. p. 88–100.
147. Tittonell P, Giller KE. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research. 2013;143:76–90. doi: 10.1016/j.fcr.2012.10.007
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis