Thermal biology of two tropical lizards from the Ecuadorian Andes and their vulnerability to climate change
Autoři:
Estefany S. Guerra-Correa aff001; Andrés Merino-Viteri aff001; María Belén Andrango aff001; Omar Torres-Carvajal aff001
Působiště autorů:
Escuela de Ciencias Biológicas, Museo de Zoología, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
aff001; Escuela de Ciencias Biológicas Laboratorio de Ecofisiología, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
aff002
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0228043
Souhrn
This study aims to analyze the thermal biology and climatic vulnerability of two closely related lizard species (Stenocercus festae and S. guentheri) inhabiting the Ecuadorian Andes at high altitudes. Four physiological parameters—body temperature (Tb), preferred temperature (Tpref), critical thermal maximum (CTmax), and critical thermal minimum (CTmin)—were evaluated to analyze the variation of thermophysiological traits among these populations that inhabit different environmental and altitudinal conditions. We also evaluate the availability of operative temperatures, warming tolerance, and thermal safety margin of each population to estimate their possible risks in the face of future raising temperatures. Similar to previous studies, our results suggest that some physiological traits (CTmax and Tb) are influenced by environmental heterogeneity, which brings changes on the thermoregulatory behavior. Other parameters (Tpref and CTmin), may be also influenced by phylogenetic constraints. Moreover, the fluctuating air temperature (Tair) as well as the operative temperatures (Te) showed that these lizards exploit a variety of thermal microenvironments, which may facilitate behavioral thermoregulation. Warming tolerance and thermal safety margin analyses suggest that both species find thermal refugia and remain active without reducing their performance or undergoing thermal stress within their habitats. We suggest that studies on the thermal biology of tropical Andean lizards living at high altitudes are extremely important as these environments exhibit a unique diversity of microclimates, which consequently result on particular thermophysiological adaptations.
Klíčová slova:
Body temperature – Climate change – Forests – Lizards – Reptile biology – Sensory physiology – Sunlight – Evolutionary physiology
Zdroje
1. Brusch GA IV, Taylor EN, Whitfield SM. Turn up the heat: thermal tolerances of lizards at La Selva, Costa Rica. Oecologia. 2016;180: 325–334. doi: 10.1007/s00442-015-3467-3 26466592
2. Maes D, Titeux N, Hortal J, Anselin A, Decleer K, Knijf GD, et al. Predicted insect diversity declines under climate change in an already impoverished region. J. Insect. Conserv. 2010;14: 485–498. doi: 10.1007/s10841-010-9277-3
3. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. 2008;105: 6668–6672. doi: 10.1073/pnas.0709472105 18458348
4. Hertz PE, Huey RB, Stevenson RD. Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat. 1993;142: 796–818. doi: 10.1086/285573 19425957
5. Lind AJ. Amphibians, Reptiles and Climate Change. 2008 May 20 [cited 19 October 2017] In: U.S. Department of Agriculture, Foreste Service, Climate Change Resource Center [Internet]. [about 3 screens] Available from: https://www.fs.usda.gov/ccrc/topics/amphibians-reptiles-and-climate-change-2008
6. Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM et al. Assessing species vulnerability to climate change. Nat. Clim. Change. 2015;5: 215–224. doi: 10.1038/nclimate2448
7. Angilletta MJ Jr., Niewiarowski PH, Navas CA. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 2002;27: 249–268. doi: 10.1016/S0306-4565(01)00094-8
8. Huey RN, Stevenson RD. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Amer. Zool. 1979;19: 357–366.
9. Angilleta MJ. Thermal Adaptation. A theoretical and Empirical Synthesis. 1st ed. New York: Oxford University Press Inc; 2009.
10. Gutiérrez J, Krenz JD, Ibargüengoytía NR. Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J. Therm. Biol. 2010;35: 332–337. doi: 10.1016/j.jtherbio.2010.07.001
11. Corbalán V, Debandi G, Kubisch E. Thermal ecology of two sympatric saxicolous lizards of the genus Phymaturus from the Payunia región (Argentina). J. Therm. Biol. 2013;38: 384–389. doi: 10.1016/j.jtherbio.2013.05.006
12. Sears MW. Geographic variation in the life history of the sagebrush lizard: the role of thermal constraints on activity. Oecologia. 2005;143: 25–36. doi: 10.1007/s00442-004-1767-0 15742218
13. Tewksbury JJ, Huey RB, Deutsch CA. Putting the heat on tropical animals. Science. 2008;320: 1296–1297. doi: 10.1126/science.1159328 18535231
14. Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Álvarez PHJ, et al. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B. 2009;276: 1939–1948. doi: 10.1098/rspb.2008.1957 19324762
15. Camacho A, Rodrigues MT, Navas C. Extreme operative temperatures are better descriptors of the thermal environment than mean temperatures. J. Therm. Biol. 2015;49–50: 106–111. doi: 10.1016/j.jtherbio.2015.02.007 25774033
16. La Torre-Cuadros MA, Herrando-Pérez S, Young KR. Diversity and structural patterns for tropical montane and premontane forests of central Peru, with an assessment of the use of higher-taxon surrogacy. Biodivers. Conserv. 2007;16: 2965–2988. doi: 10.1007/s10531-007-9155-9
17. Cabré MF, Solman S, Núñez M. Regional climate change scenarios over southern South America for future climate (2080–2099) using the MM5 Model. Mean, interannual variability and uncertainties. Atmósfera. 2016;29: 35–60. doi: 10.20937/ATM.2016.29.01.04
18. Urrutia R, Vuille M. Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. J. Geophys. Res. Atmos. 2009;114: 1–15. doi: 10.1029/2008JD011021
19. Sinervo B, Miles DM, Martínez-Méndez N, Lara-Resendiz R, Méndez-de-la-Cruz F. Response to comment on erosion of lizard diversity by climate change and altered thermal niches. Science. 2011;332: 537–538. doi: 10.1126/science.1195348
20. Torres-Carvajal O. A taxonomic revision of South American Stenocercus (Squamata: Iguania) lizards. Herpetol. Monogr. 2007;21: 76–178. doi: 10.1655/06-001.1
21. Uetz P, Hallermann J, Hôsek J. The Reptile Database. 2017 [cited 25 September2017] [Internet]. Available from: http://reptile-database.reptarium.cz/search?search = stenocercus&submit = Search.
22. Maia-Carneiro T, Rocha CDF. Seasonal variations in behaviour of thermoregulation in juveniles and adults Liolaemus lutzae (Squamata, Liolaemidae) in a remnant of Brazilian restinga. Behav. Process. 2013;100: 48.53. doi: 10.1016/j.beproc.2013.08.001 23941976
23. Stellatelli OA, Villalba A, Block C, Vega LE, Dajil JE, Cruz FB. Seasonal shifts in the thermal biology of the lizard Liolaemus tandiliensis (Squamata, Liolaemidae) J Therm. Biol. 2018;73: 61–70. doi: 10.1016/j.jtherbio.2018.02.009 29549992
24. Moreno Azócar DL, Vanhooydonck B, Bonino MF, Perotti MG, Abdala CS, Schulte JA, et al. Chasing the Patagonian sun: comparative thermal biology of Liolaemus lizards. Oecologia. 2013;171: 773–788. doi: 10.1007/s00442-012-2447-0 23011849
25. Labra A, Pienaar L, Hansen TF. Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking. Am. Nat. 2009;174: 204–220. doi: 10.1086/600088 19538089
26. Medina M, Scolaro A, Méndez-De la Cruz F, Sinervo B, Miles DB, Ibarguengoytía N. Thermal biology of genus Liolaemus: a phylogenetic approach reveals advantages of the genus to survive climate change. J. Therm. Biol. 2012;37: 579–586. doi: 10.1016/j.jtherbio.2012.06.006
27. Rodríguez-Serrano E, Navas CA, Bozinovic F. The comparative field body temperature among Liolaemus lizards: testing the static and the labile hypotheses. J. Therm. Biol. 2009;34: 306–309. doi: 10.1016/j.jtherbio.2009.04.002
28. Gómez Alés R, Acosta JC, Laspiur A. Thermal biology in two syntopic lizards, Phymaturus extrilidus and Liolaemus parvus, in the Puna región of Argentina. J. Therm. Biol. 2017;68: 73–82. doi: 10.1016/j.jtherbio.2017.02.001 28689724
29. Carvajal-Campos A. Reproducción y dieta de la lagartija andina Stenocercus guentheri (Squamata: Iguania) en el Bosque Protector Jersualém. B.Sc. Thesis, Pontificia Universidad Católica del Ecuador. 2009.
30. Torres-Carvajal O, Mafla-Endara P. A new criptic species of Stenocercus (Squamata: iguanidae) from the Andes of Ecuador. J. Herpetol. 2013;47: 184–190. doi: 10.1670/11-211
31. Torres-Carvajal O. Phylogeny and biogeography of a large radiation of Andean lizards (Iguania, Stenocercus). Zool. Scripta. 2007;36: 311–326. doi: 10.1111/j.1463-6409.2007.00284.x
32. Cisneros-Heredia DF, Yánez-Muñoz M, Brito J, Reyes-Puig C. Stenocercus guentheri. 2017 [cited 22 October 2018]. In: The IUCN Red List of Threatened Species [Internet]. Available from: http://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T44579900A44579911.en.
33. González ECJ. Determinación de los costos operativos del plan de manejo del Bosque Protector Jerusalem en la provincia de Pichincha. Engineer in Administration and Agricultural Production. Thesis, Universidad Nacional de Loja. 2008.
34. Merkel E. Climate data for cities worldwide. [cited 14 February 2018] Available from: https://en.climate-data.org/.
35. Vázquez MC. Desarrollo turístico y creación de un centro de información y de producción y comercialización artesanal como parte del sistema turístico de la población de Calacalí. M. Sc. Thesis, Instituto de Altos Estudios Nacionales, Departamento de Docencia. 2007.
36. Cisneros-Heredia DF, Valencia J, Brito J, Almendáriz A, Munoz G. Stenocercus festae. 2017 [cited 22 October 2018]. In: The IUCN Red List of Threatened Species [Internet]. Available from: http://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T178306A54446402.en.
37. Ansaloni R, Chacón GV. Interacción suelo, vegetación y agua: el efecto de las plantaciones de pino en ecosistemas alto andinos del Azuay y Cañar. Revista de la Universidad del Azuay. 2003;31–32: 166–173.
38. Andrango MB, Sette C, Torres-Carvajal O. Short-term predicted extinction of Andean populations of the lizard Stenocercus guentheri (Iguanidae: Tropidurinae). J. Therm. Biol. 2016;62: 30–36. doi: 10.1016/j.jtherbio.2016.09.012 27839547
39. Simmons JE. Herpetological Collecting and Collections Management. Society for Study of Amphibians and Reptiles. Herpetological Circular, 1987
40. Kubisch E. Efectos del cambio climático global en el crecimiento y aptitude de tres especies de lagartos. PhD Thesis. Centro Regional Universitario Bariloche, Universidad Nacional del Comahue. 2013.
41. Bakken GS. Measurement and application of operative and standard operative temperatures in Ecology. Amer. Zool. 1992;32: 194–216.
42. Dzialowski EM. Use of operative temperature and standard operative temperature models in thermal biology. J. Therm. Biol. 2005;30: 317–334. doi: 10.1016/j.jtherbio.2005.01.005
43. Ibargüengoytía NR, Medina SM, Fernández JB, Gutiérrez JA, Tappari F, Scolaro A. Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J. Therm. Biol. 2010;35: 21–27. doi: 10.1016/j.jtherbio.2009.10.003
44. Sinervo B, Méndez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, et al. Erosion of lizard diversity by climate change and altered thermal niches. Science. 2010;328: 894–899. doi: 10.1126/science.1184695 20466932
45. Martin TL, Huey RB. “Suboptimal” is Optimal: Jensen’s Inequality and Ectotherm Thermal Preferences. Amer. Naturalist. 2008:171: E102–E118. doi: 10.1086/527502 18271721
46. Pincheira-Donoso D. Selección y evolución adaptativa: Fundamentos teóricos y empíricos desde la perspectiva de los lagartos. Santiago de Chile: Ediciones Universidad Católica de Chile; 2012.
47. Addo-Bediako A, Chown SL, Gaston KJ. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B. 2000;267: 739–745. doi: 10.1098/rspb.2000.1065 10819141
48. Buckley LB, Miller EF, Kingsolver JG. Ectotherm thermal stress and specialization across altitude and latitude. Integr. Comp. Biol. 2013;53: 571–581. doi: 10.1093/icb/ict026 23620253
49. Muñoz MM, Langham GM, Brandley MC, Rosauer D, Williams SE, Moritz C. Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards. Evolution. 2016;70: 2537–2549. doi: 10.1111/evo.13064 27612295
50. Pearson OP. Habits of the lizard Liolaemus multiformis multiformis at high altitudes in southern Peru. Copeia. 1954;1954: 111: 116.
51. Camacho A, Rusch TW. Methods and pitfalls of measuring thermal preference and tolerance in lizards. J. Therm. Biol. 2017;68: 63–72. doi: 10.1016/j.jtherbio.2017.03.010 28689723
52. Gunderson AR, Leal M. Patterns of thermal constraint on ectotherm activity. Amer. Nat. 2015;185: 653–664. doi: 10.1086/680849 25905508
53. Kearney M, Shine R, Porter WP. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. PNAS. 2009;106: 3835–3840. doi: 10.1073/pnas.0808913106 19234117
54. Grigg JW, Buckley LB. Conservatism of lizard thermal tolerances and body temperature across evolutionary history and geography. Biol. Lett. 2013;9: 1–4. doi: 10.1098/rsbl.2012.1056
55. Kubisch EL, Fernández JB, Ibargüengoytía NR. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. J. Comp. Physiol. B. 2015;186: 243–253. doi: 10.1007/s00360-015-0952-2 26679700
56. Dillon ME, Wang G, Huey RB. Global metabolic impacts of recent climate warming. Nature. 2010;467: 704–706. doi: 10.1038/nature09407 20930843
57. Tiessen H., 2011. Introduction. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H, editors. Climate Change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE).
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- Kde se vzal COVID-19: Mohou za pandemii nakažená zvířata, nebo únik viru z laboratoře?
- Jak se liší věk jednotlivých orgánů v našem těle?
- „Jednohubky“ z klinického výzkumu – 2025/1
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy