Sonic Hedgehog upregulation does not enhance the survival and engraftment of stem cell-derived cardiomyocytes in infarcted hearts
Autoři:
Jill J. Weyers aff001; Jagadambika J. Gunaje aff001; Benjamin Van Biber aff001; Amy Martinson aff001; Hans Reinecke aff001; William M. Mahoney aff001; Stephen M. Schwartz aff001; Timothy C. Cox aff002; Charles E. Murry aff001
Působiště autorů:
Department of Pathology, Center for Cardiovascular Biology, and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
aff001; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, United States of America
aff002; Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
aff003; Department of Medicine/Cardiology, University of Washington, Seattle, Washington, United States of America
aff004; Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
aff005
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227780
Souhrn
The engraftment of human stem cell-derived cardiomyocytes (hSC-CMs) is a promising treatment for remuscularizing the heart wall post-infarction, but it is plagued by low survival of transplanted cells. We hypothesize that this low survival rate is due to continued ischemia within the infarct, and that increasing the vascularization of the scar will ameliorate the ischemia and improve hSC-CM survival and engraftment. An adenovirus expressing the vascular growth factor Sonic Hedgehog (Shh) was injected into the infarcted myocardium of rats immediately after ischemia/reperfusion, four days prior to hSC-CM injection. By two weeks post-cell injection, Shh treatment had successfully increased capillary density outside the scar, but not within the scar. In addition, there was no change in vessel size or percent vascular volume when compared to cell injection alone. Micro-computed tomography revealed that Shh failed to increase the number and size of larger vessels. It also had no effect on graft size or heart function when compared to cell engraftment alone. Our data suggests that, when combined with the engraftment of hSC-CMs, expression of Shh within the infarct scar and surrounding myocardium is unable to increase vascularization of the infarct scar, and it does not improve survival or function of hSC-CM grafts.
Klíčová slova:
Capillaries – Cardiomyocytes – Heart – Hedgehog signaling – Histology – Myocardial infarction – Myocardium – RNA viruses
Zdroje
1. Laflamme MA, Gold J, Xu C, Hassanipour M, Rosler E, Police S, et al. Formation of Human Myocardium in the Rat Heart from Human Embryonic Stem Cells. Am J Pathol. 2005;167: 663–671. doi: 10.1016/S0002-9440(10)62041-X 16127147
2. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol. 2007;50: 1884–93. doi: 10.1016/j.jacc.2007.07.054 17980256
3. Dai W, Field LJ, Rubart M, Reuter S, Hale SL, Zweigerdt R, et al. Survival and maturation of human embryonic stem cell-derived cardiomyocytes in rat hearts. J Mol Cell Cardiol. 2007;43: 504–16. doi: 10.1016/j.yjmcc.2007.07.001 17707399
4. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25: 1015–24. doi: 10.1038/nbt1327 17721512
5. Van Laake LW, Passier R, Doevendans PA, Mummery CL. Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res. 2008;102: 1008–1010. doi: 10.1161/CIRCRESAHA.108.175505 18436793
6. Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature. 2016;538: 388–391. doi: 10.1038/nature19815 27723741
7. Chong JJH, Yang X, Don CW, Minami E, Liu Y-W, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510: 273–7. doi: 10.1038/nature13233 24776797
8. Liu YW, Chen B, Yang X, Fugate JA, Kalucki FA, Futakuchi-Tsuchida A, et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol. 2018;36: 597–605. doi: 10.1038/nbt.4162 29969440
9. Romagnuolo R, Masoudpour H, Porta-Sánchez A, Qiang B, Barry J, Laskary A, et al. Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate the Infarcted Pig Heart but Induce Ventricular Tachyarrhythmias. Stem Cell Reports. 2019;12: 967–981. doi: 10.1016/j.stemcr.2019.04.005 31056479
10. Fernandes S, Chong JJH, Paige SL, Iwata M, Torok-Storb B, Keller G, et al. Comparison of human embryonic stem cell-derived cardiomyocytes, cardiovascular progenitors, and bone marrow mononuclear cells for cardiac repair. Stem Cell Reports. 2015;5: 753–762. doi: 10.1016/j.stemcr.2015.09.011 26607951
11. Shiba Y, Fernandes S, Zhu W-Z, Filice D, Muskheli V, Kim J, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012;489: 322–5. doi: 10.1038/nature11317 22864415
12. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol. 2001;33: 907–21. doi: 10.1006/jmcc.2001.1367 11343414
13. Robey TE, Saiget MK, Reinecke H, Murry CE. Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol. 2008;45: 567–81. doi: 10.1016/j.yjmcc.2008.03.009 18466917
14. Weyers JJ, Schwartz SM, Minami E, Carlson DD, Dupras SK, Weitz K, et al. Effects of cell grafting on coronary remodeling after myocardial infarction. J Am Heart Assoc. 2013;2: e000202. doi: 10.1161/JAHA.113.000202 23723253
15. Lavine KJ, Kovacs A, Weinheimer C, Mann DL. Repetitive myocardial ischemia promotes coronary growth in the adult mammalian heart. J Am Heart Assoc. 2013;2: e000343. doi: 10.1161/JAHA.113.000343 24080909
16. Pola R, Ling LE, Silver M, Corbley MJ, Kearney M, Blake Pepinsky R, et al. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med. 2001;7: 706–11. doi: 10.1038/89083 11385508
17. Lavine KJ, White AC, Park C, Smith CS, Choi K, Long F, et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 2006;20: 1651–66 ST. doi: 10.1101/gad.1411406 16778080
18. Renault M-A, Roncalli J, Tongers J, Thorne T, Klyachko E, Misener S, et al. Sonic hedgehog induces angiogenesis via Rho kinase-dependent signaling in endothelial cells. J Mol Cell Cardiol. 2010;49: 490–8. doi: 10.1016/j.yjmcc.2010.05.003 20478312
19. Lawson ND, Vogel AM, Weinstein BM. sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell. 2002;3: 127–36. doi: 10.1016/s1534-5807(02)00198-3 12110173
20. Morrow D, Cullen JP, Liu W, Guha S, Sweeney C, Birney YA, et al. Sonic Hedgehog induces Notch target gene expression in vascular smooth muscle cells via VEGF-A. Arterioscler Thromb Vasc Biol. 2009;29: 1112–8. doi: 10.1161/ATVBAHA.109.186890 19407245
21. Palladino M, Gatto I, Neri V, Straino S, Silver M, Tritarelli A, et al. Pleiotropic beneficial effects of sonic hedgehog gene therapy in an experimental model of peripheral limb ischemia. Mol Ther. 2011;19: 658–66. doi: 10.1038/mt.2010.292 21224834
22. Ahmed RPH, Haider KH, Shujia J, Afzal MR, Ashraf M. Sonic Hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/netrin-1/PKC pathway. PLoS One. 2010;5: e8576 ST. doi: 10.1371/journal.pone.0008576 20052412
23. Agouni A, Mostefai HA, Porro C, Carusio N, Favre J, Richard V, et al. Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J. 2007;21: 2735–41. doi: 10.1096/fj.07-8079com 17428963
24. Pola R, Ling LE, Aprahamian TR, Barban E, Bosch-Marce M, Curry C, et al. Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation. 2003;108: 479–85 ST-Postnatal recapitulation of embryonic. doi: 10.1161/01.CIR.0000080338.60981.FA 12860919
25. Kusano KF, Pola R, Murayama T, Curry C, Kawamoto A, Iwakura A, et al. Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med. 2005;11: 1197–204. doi: 10.1038/nm1313 16244652
26. Straface G, Aprahamian T, Flex A, Gaetani E, Biscetti F, Smith RC, et al. Sonic Hedgehog Regulates angiogenesis and myogeneiss during post-natal skeletal muscle regeneration. J Cell Mol Med. 2009;13: 2424–2435. doi: 10.1111/j.1582-4934.2008.00440.x 18662193
27. Ueda K, Takano H, Niitsuma Y, Hasegawa H, Uchiyama R, Oka T, et al. Sonic Hedgehog is a critical mediator of erythropoietin-induced cardiac protection in mice. J Clin Invest. 2010;120. doi: 10.1172/JCI39828
28. Lavine KJ, Kovacs A, Ornitz DM. Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Invest. 2008;118: 2404. doi: 10.1172/JCI34561 18568073
29. Paulis L, Fauconnier J, Cazorla O, Thireau J, Soleti R, Vidal B, et al. Activation of Sonic hedgehog signaling in ventricular cardiomyocytes exerts cardioprotection against ischemia reperfusion injuries. Sci Rep. 2015;5: 7983. doi: 10.1038/srep07983 25613906
30. Mackie AR, Klyachko E, Thorne T, Schultz KM, Millay M, Ito A, et al. Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ Res. 2012;111: 312–21. doi: 10.1161/CIRCRESAHA.112.266015 22581926
31. He T-C, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci. 1998;95: 2509–2514. doi: 10.1073/pnas.95.5.2509 9482916
32. Luo J, Deng Z-L, Luo X, Tang N, Song W-X, Chen J, et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc. 2007;2: 1236–1247. doi: 10.1038/nprot.2007.135 17546019
33. Jager L, Hausl MA, Rauschhuber C, Wolf NM, Kay MA, Erhardt A. A rapid protocol for construction and production of high-capacity adenoviral vectors. Nat Protoc. 2009;4: 547–564. doi: 10.1038/nprot.2009.4 19373227
34. Lundy SD, Zhu W-Z, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 2013;22: 1991–2002. doi: 10.1089/scd.2012.0490 23461462
35. Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 2012;10: 16–28. doi: 10.1016/j.stem.2011.12.013 22226352
36. Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Hear Circ Physiol. 2011;301: H2006–17. doi: 10.1152/ajpheart.00694.2011 21890694
37. McDevitt TC, Laflamme MA, Murry CE. Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI 3-kinase/Akt signaling pathway. J Mol Cell Cardiol. 2005;39: 865–73. doi: 10.1016/j.yjmcc.2005.09.007 16242146
38. Xu C, Police S, Hassanipour M, Li Y, Chen Y, Priest C, et al. Efficient generation and cryopreservation of cardiomyocytes derived from human embryonic stem cells. Regen Med. 2011;6: 53–66. doi: 10.2217/rme.10.91 21175287
39. Virag JI, Murry CE. Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am J Pathol. 2003;163: 2433–40. doi: 10.1016/S0002-9440(10)63598-5 14633615
40. Weyers JJ, Carlson DD, Murry CE, Schwartz SM, Mahoney WMJ. Retrograde Perfusion and Filling of Mouse Coronary Vasculature as Preparation for Micro Computed Tomography Imaging. J Vis Exp. 2012;60: 1–8. doi: 10.3791/3740 22353785
41. Webster C, Silberstein L, Hays AP, Blau HM. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell. 1988;52: 503–513. doi: 10.1016/0092-8674(88)90463-1 3342447
42. Hughes SM, Cho M, Karsch-Mizrachi I, Travis M, Silberstein L, Leinwand LA, et al. Three Slow Myosin Heavy Chains Sequentially Expressed in Developing Mammalian Skeletal Muscle. Dev Biol. 1993;158: 183–199. doi: 10.1006/dbio.1993.1178 7687223
43. Alroy J, Goyal V, Skutelsky E. Lectin histochemistry of mammalian endothelium. Histochem Cell Biol. 1987;86: 603–607. doi: 10.1007/BF00489554 3610672
44. Christie KN, Thomson C. Bandeiraea simplicifolia lectin demonstrates significantly more capillaries in rat skeletal muscle than enzyme methods. J Histochem Cytochem. 1989;37: 1303–1304. doi: 10.1177/37.8.2754256 2754256
45. Wright SP. Adjusted P-Values for Simultaneous Inference. Biometrics. 1992;48: 1005. doi: 10.2307/2532694
46. Kass-Eisler A, Falck-Pedersen E, Alvira M, Rivera J, Buttrick PM, Wittenberg BA, et al. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivofsfsd. Proc Natl Acad Sci. 1993;90: 11498–11502. doi: 10.1073/pnas.90.24.11498 8265580
47. Bai CB, Stephen D, Joyner AL. All Mouse Ventral Spinal Cord Patterning by Hedgehog Is Gli Dependent and Involves an Activator Function of Gli3. Dev Cell. 2004;6: 103–115 ST-All Mouse Ventral Spinal Cord Patter. doi: 10.1016/s1534-5807(03)00394-0 14723851
48. Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL. Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development. 2002;129: 4753–4761 ST-Gli2, but not Gli1, is required fo. 12361967
49. Pearse RV, Vogan KJ, Tabin CJ. Ptc1 and Ptc2 transcripts provide distinct readouts of Hedgehog signaling activity during chick embryogenesis. Dev Biol. 2001;239: 15–29. doi: 10.1006/dbio.2001.0430 11784016
50. Roncalli J, Renault M-A, Tongers J, Misener S, Thorne T, Kamide C, et al. Sonic hedgehog-induced functional recovery after myocardial infarction is enhanced by AMD3100-mediated progenitor-cell mobilization. J Am Coll Cardiol. 2011;57: 2444–2452. doi: 10.1016/j.jacc.2010.11.069 21658566
51. Kolpak A, Zhang J, Bao Z-Z. Sonic Hedgehog Has a Dual Effect on the Growth of Retinal Ganglion Axons Depending on Its Concentration. J Neurosci. 2005;25: 3432–3441. doi: 10.1523/JNEUROSCI.4938-04.2005 15800198
52. Chinchilla P, Xiao L, Kazanietz MG, Riobo NA. Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle. 2010;9: 570–579. doi: 10.4161/cc.9.3.10591 20081366
53. Renault MA, Vandierdonck S, Chapouly C, Yu Y, Qin G, Metras A, et al. Gli3 regulation of myogenesis is necessary for ischemia-induced angiogenesis. Circ Res. 2013;113: 1148–1158. doi: 10.1161/CIRCRESAHA.113.301546 24044950
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy