A neonatal nonhuman primate model of gestational Zika virus infection with evidence of microencephaly, seizures and cardiomyopathy
Autoři:
Rosemary J. Steinbach aff001; Nicole N. Haese aff002; Jessica L. Smith aff002; Lois M. A. Colgin aff004; Rhonda P. MacAllister aff005; Justin M. Greene aff002; Christopher J. Parkins aff002; J. Beth Kempton aff006; Edward Porsov aff006; Xiaojie Wang aff007; Lauren M. Renner aff008; Trevor J. McGill aff008; Brandy L. Dozier aff005; Craig N. Kreklywich aff002; Takeshi F. Andoh aff002; Marjorie R. Grafe aff010; Heidi L. Pecoraro aff011; Travis Hodge aff012; Robert M. Friedman aff008; Lisa A. Houser aff013; Terry K. Morgan aff010; Peter Stenzel aff010; Jonathan R. Lindner aff015; Robert L. Schelonka aff016; Jonah B. Sacha aff002; Victoria H. J. Roberts aff001; Martha Neuringer aff008; John V. Brigande aff006; Christopher D. Kroenke aff007; Antonio E. Frias aff001; Anne D. Lewis aff004; Meredith A. Kelleher aff001; Alec J. Hirsch aff002; Daniel Neal Streblow aff002
Působiště autorů:
Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
aff001; Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
aff002; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
aff003; Division of Comparative Medicine, Pathology Services Unit, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
aff004; Division of Comparative Medicine, Clinical Medicine Unit, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
aff005; Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
aff006; Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
aff007; Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
aff008; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
aff009; Department of Pathology, Oregon Health & Science University, Portland, Oregon, United States of America
aff010; Veterinary Diagnostic Services Department, North Dakota State University, Fargo, North Dakota, United States of America
aff011; Division of Comparative Medicine, Time Mated Breeding Services Unit, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
aff012; Division of Comparative Medicine, Behavioral Services Unit, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
aff013; Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon, United States of America
aff014; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States of America
aff015; Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
aff016
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227676
Souhrn
Zika virus infection during pregnancy is associated with miscarriage and with a broad spectrum of fetal and neonatal developmental abnormalities collectively known as congenital Zika syndrome (CZS). Symptomology of CZS includes malformations of the brain and skull, neurodevelopmental delay, seizures, joint contractures, hearing loss and visual impairment. Previous studies of Zika virus in pregnant rhesus macaques (Macaca mulatta) have described injury to the developing fetus and pregnancy loss, but neonatal outcomes following fetal Zika virus exposure have yet to be characterized in nonhuman primates. Herein we describe the presentation of rhesus macaque neonates with a spectrum of clinical outcomes, including one infant with CZS-like symptoms including cardiomyopathy, motor delay and seizure activity following maternal infection with Zika virus during the first trimester of pregnancy. Further characterization of this neonatal nonhuman primate model of gestational Zika virus infection will provide opportunities to evaluate the efficacy of pre- and postnatal therapeutics for gestational Zika virus infection and CZS.
Klíčová slova:
Euthanasia – Macaque – Neonates – placenta – Pregnancy – Rhesus monkeys – Zika virus – Purkinje cells
Zdroje
1. da Silva IRF, Frontera JA, Bispo de Filippis AM, Nascimento O, Group R-G-ZR. Neurologic Complications Associated With the Zika Virus in Brazilian Adults. JAMA Neurol. 2017;74(10):1190–8. doi: 10.1001/jamaneurol.2017.1703 28806453
2. Minhas AM, Nayab A, Iyer S, Narmeen M, Fatima K, Khan MS, et al. Association of Zika Virus with Myocarditis, Heart Failure, and Arrhythmias: A Literature Review. Cureus. 2017;9(6):e1399. doi: 10.7759/cureus.1399 28856072
3. Brasil P, Pereira JP Jr., Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M, et al. Zika Virus Infection in Pregnant Women in Rio de Janeiro. N Engl J Med. 2016;375(24):2321–34. doi: 10.1056/NEJMoa1602412 26943629
4. Franca GV, Schuler-Faccini L, Oliveira WK, Henriques CM, Carmo EH, Pedi VD, et al. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet. 2016;388(10047):891–7. doi: 10.1016/S0140-6736(16)30902-3 27372398
5. Melo AS, Aguiar RS, Amorim MM, Arruda MB, Melo FO, Ribeiro ST, et al. Congenital Zika Virus Infection: Beyond Neonatal Microcephaly. JAMA Neurol. 2016;73(12):1407–16. doi: 10.1001/jamaneurol.2016.3720 27695855
6. Centers for Disease Control and Prevention. Outcomes of Pregnancies with Laboratory Evidence of Possible Zika Virus Infection, 2015–2018 2018 [Available from: https://www.cdc.gov/pregnancy/zika/data/pregnancy-outcomes.html.
7. Lopes Moreira ME, Nielsen-Saines K, Brasil P, Kerin T, Damasceno L, Pone M, et al. Neurodevelopment in Infants Exposed to Zika Virus In Utero. N Engl J Med. 2018;379(24):2377–9. doi: 10.1056/NEJMc1800098 30575464
8. Wheeler AC, Ventura CV, Ridenour T, Toth D, Nobrega LL, Silva de Souza Dantas LC, et al. Skills attained by infants with congenital Zika syndrome: Pilot data from Brazil. PLoS One. 2018;13(7):e0201495. doi: 10.1371/journal.pone.0201495 30048541
9. Satterfield-Nash A, Kotzky K, Allen J, Bertolli J, Moore CA, Pereira IO, et al. Health and Development at Age 19–24 Months of 19 Children Who Were Born with Microcephaly and Laboratory Evidence of Congenital Zika Virus Infection During the 2015 Zika Virus Outbreak—Brazil, 2017. MMWR Morb Mortal Wkly Rep. 2017;66(49):1347–51. doi: 10.15585/mmwr.mm6649a2 29240727
10. Alves LV, Paredes CE, Silva GC, Mello JG, Alves JG. Neurodevelopment of 24 children born in Brazil with congenital Zika syndrome in 2015: a case series study. BMJ Open. 2018;8(7):e021304. doi: 10.1136/bmjopen-2017-021304 30012787
11. Peloggia A, Ali M, Nanda K, Bahamondes L. Zika virus exposure in pregnancy and its association with newborn visual anomalies and hearing loss. Int J Gynaecol Obstet. 2018;143(3):277–81. doi: 10.1002/ijgo.12663 30191558
12. Marquezan MC, Ventura CV, Sheffield JS, Golden WC, Omiadze R, Belfort R Jr., et al. Ocular effects of Zika virus-a review. Surv Ophthalmol. 2018;63(2):166–73. doi: 10.1016/j.survophthal.2017.06.001 28623165
13. Nogueira ML, Nery Junior NRR, Estofolete CF, Bernardes Terzian AC, Guimaraes GF, Zini N, et al. Adverse birth outcomes associated with Zika virus exposure during pregnancy in Sao Jose do Rio Preto, Brazil. Clin Microbiol Infect. 2018;24(6):646–52. doi: 10.1016/j.cmi.2017.11.004 29133154
14. Ventura LO, Ventura CV, Dias NC, Vilar IG, Gois AL, Arantes TE, et al. Visual impairment evaluation in 119 children with congenital Zika syndrome. J AAPOS. 2018;22(3):218–22 e1. doi: 10.1016/j.jaapos.2018.01.009 29654909
15. Moura da Silva AA, Ganz JS, Sousa PD, Doriqui MJ, Ribeiro MR, Branco MD, et al. Early Growth and Neurologic Outcomes of Infants with Probable Congenital Zika Virus Syndrome. Emerg Infect Dis. 2016;22(11):1953–6. doi: 10.3201/eid2211.160956 27767931
16. Attaway DF, Waters NM, Geraghty EM, Jacobsen KH. Zika virus: Endemic and epidemic ranges of Aedes mosquito transmission. J Infect Public Health. 2017;10(1):120–3. doi: 10.1016/j.jiph.2016.09.008 27707632
17. Centers for Disease Control and Prevention. Zika Transmission 2019 [Available from: https://www.cdc.gov/zika/prevention/transmission-methods.html.
18. Adams Waldorf KM, Nelson BR, Stencel-Baerenwald JE, Studholme C, Kapur RP, Armistead B, et al. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med. 2018;24(3):368–74. doi: 10.1038/nm.4485 29400709
19. Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E, Vornhagen J, et al. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat Med. 2016;22(11):1256–9. doi: 10.1038/nm.4193 27618651
20. Coffey LL, Keesler RI, Pesavento PA, Woolard K, Singapuri A, Watanabe J, et al. Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease. Nat Commun. 2018;9(1):2414. doi: 10.1038/s41467-018-04777-6 29925843
21. Dudley DM, Van Rompay KK, Coffey LL, Ardeshir A, Keesler RI, Bliss-Moreau E, et al. Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates. Nat Med. 2018;24(8):1104–7. doi: 10.1038/s41591-018-0088-5 29967348
22. Magnani DM, Rogers TF, Maness NJ, Grubaugh ND, Beutler N, Bailey VK, et al. Fetal demise and failed antibody therapy during Zika virus infection of pregnant macaques. Nat Commun. 2018;9(1):1624. doi: 10.1038/s41467-018-04056-4 29691387
23. Mohr EL, Block LN, Newman CM, Stewart LM, Koenig M, Semler M, et al. Ocular and uteroplacental pathology in a macaque pregnancy with congenital Zika virus infection. PLoS One. 2018;13(1):e0190617. doi: 10.1371/journal.pone.0190617 29381706
24. Nguyen SM, Antony KM, Dudley DM, Kohn S, Simmons HA, Wolfe B, et al. Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLoS Pathog. 2017;13(5):e1006378. doi: 10.1371/journal.ppat.1006378 28542585
25. Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, et al. Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell. 2016;19(1):120–6. doi: 10.1016/j.stem.2016.04.017 27179424
26. Ohki CMY, Benazzato C, Russo FB, Beltrao-Braga PCB. Developing animal models of Zika virus infection for novel drug discovery. Expert Opin Drug Discov. 2019:1–13.
27. Szaba FM, Tighe M, Kummer LW, Lanzer KG, Ward JM, Lanthier P, et al. Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection. PLoS Pathog. 2018;14(4):e1006994. doi: 10.1371/journal.ppat.1006994 29634758
28. Hirsch AJ, Roberts VHJ, Grigsby PL, Haese N, Schabel MC, Wang X, et al. Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology. Nat Commun. 2018;9(1):263. doi: 10.1038/s41467-017-02499-9 29343712
29. Cui L, Zou P, Chen E, Yao H, Zheng H, Wang Q, et al. Visual and Motor Deficits in Grown-up Mice with Congenital Zika Virus Infection. EBioMedicine. 2017;20:193–201. doi: 10.1016/j.ebiom.2017.04.029 28583742
30. Julander JG, Siddharthan V, Park AH, Preston E, Mathur P, Bertolio M, et al. Consequences of in utero exposure to Zika virus in offspring of AG129 mice. Sci Rep. 2018;8(1):9384. doi: 10.1038/s41598-018-27611-x 29925850
31. Darbellay J, Cox B, Lai K, Delgado-Ortega M, Wheler C, Wilson D, et al. Zika Virus Causes Persistent Infection in Porcine Conceptuses and may Impair Health in Offspring. EBioMedicine. 2017;25:73–86. doi: 10.1016/j.ebiom.2017.09.021 29097124
32. Pentsuk N, van der Laan JW. An interspecies comparison of placental antibody transfer: new insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res B Dev Reprod Toxicol. 2009;86(4):328–44. doi: 10.1002/bdrb.20201 19626656
33. Chiu CY, Sanchez-San Martin C, Bouquet J, Li T, Yagi S, Tamhankar M, et al. Experimental Zika Virus Inoculation in a New World Monkey Model Reproduces Key Features of the Human Infection. Sci Rep. 2017;7(1):17126. doi: 10.1038/s41598-017-17067-w 29215081
34. Martinot AJ, Abbink P, Afacan O, Prohl AK, Bronson R, Hecht JL, et al. Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus Monkeys. Cell. 2018;173(5):1111–22 e10. doi: 10.1016/j.cell.2018.03.019 29606355
35. Seferovic M, Sanchez-San Martin C, Tardif SD, Rutherford J, Castro ECC, Li T, et al. Experimental Zika Virus Infection in the Pregnant Common Marmoset Induces Spontaneous Fetal Loss and Neurodevelopmental Abnormalities. Sci Rep. 2018;8(1):6851. doi: 10.1038/s41598-018-25205-1 29717225
36. Hopper KJ, Capozzi DK, Newsome JT. Effects of maternal and infant characteristics on birth weight and gestation length in a colony of rhesus macaques (Macaca mulatta). Comp Med. 2008;58(6):597–603. 19149417
37. Tarantal AF, Gargosky SE. Characterization of the insulin-like growth factor (IGF) axis in the serum of maternal and fetal macaques (Macaca mulatta and Macaca fascicularis). Growth Regul. 1995;5(4):190–8. 8745144
38. Tarantal AF. CHAPTER 20—Ultrasound Imaging in Rhesus (Macaca mulatta) and Long-tailed (Macaca fascicularis) Macaques: Reproductive and Research Applications. In: Sonia W-C, editor. The Laboratory Primate. London: Academic Press; 2005. p. 317–52.
39. Ruppenthal GC, Sackett GP. Research protocol & technician's manual: a guide to the care, feeding, & evaluation of infant monkeys. Seattle, WA: Infant Primate Research Laboratory, University of Washington; 1992.
40. O'Connor M, McDaniel N, Brady WJ. The pediatric electrocardiogram: part I: Age-related interpretation. Am J Emerg Med. 2008;26(4):506–12. doi: 10.1016/j.ajem.2008.03.030 18416018
41. Goldberger AL, Goldberger ZD, Shvilkin A. Atrial and Ventricular Enlargement. Goldberger's Clinical Electrocardiography: A Simplified Approach. 9th ed. Philadelphia: Elsevier/Saunders; 2018. p. 50–60.
42. Mirvis DM, Goldberger AL. Electrocardiography. In: Zipes DP, Libby P, Bonow RO, Mann DL, Tomaselli GF, Braunwald E, editors. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia: W.B. Saunders Company; 2018.
43. Slotkin TA, Seidler FJ, Spindel ER. Prenatal nicotine exposure in rhesus monkeys compromises development of brainstem and cardiac monoamine pathways involved in perinatal adaptation and sudden infant death syndrome: amelioration by vitamin C. Neurotoxicol Teratol. 2011;33(3):431–4. doi: 10.1016/j.ntt.2011.02.001 21320590
44. Wozniak LJ, Hussain SA, Goldman H, Hand IL. The cardiothoracic ratio in AGA and SGA very low birth weight newborn infants. J Perinatol. 2006;26(12):769–71. doi: 10.1038/sj.jp.7211605 17024141
45. Abend NS, Jensen FE, Inder TE, Volpe JJ. Chapter 12—Neonatal Seizures. In: Volpe JJ, Inder TE, Darras BT, de Vries LS, du Plessis AJ, Neil JJ, et al., editors. Volpe's Neurology of the Newborn (Sixth Edition): Elsevier; 2018. p. 275–321.e14.
46. Sackett G, Ruppenthal G, Hewitson L, Simerly C, Schatten G. Neonatal behavior and infant cognitive development in rhesus macaques produced by assisted reproductive technologies. Dev Psychobiol. 2006;48(3):243–65. doi: 10.1002/dev.20132 16568416
47. Kerr GR, Kennan AL, Waisman HA, Allen JR. Growth and Development of the Fetal Rhesus Monkey (Macaca mulatta). I. Physical Growth. Growth. 1969;33:201–13. 4979490
48. Cakirer S, Karaarslan E, Arslan A. Spontaneously T1-hyperintense lesions of the brain on MRI: a pictorial review. Current Problems in Diagnostic Radiology. 2003;32(5):194–217. doi: 10.1016/s0363-0188(03)00026-4 12963867
49. Kelleher MA, Liu Z, Wang X, Kroenke CD, Houser LA, Dozier BL, et al. Beyond the uterine environment: a nonhuman primate model to investigate maternal-fetal and neonatal outcomes following chronic intrauterine infection. Pediatr Res. 2017;82(2):244–52. doi: 10.1038/pr.2017.57 28422948
50. Carvalho M, Miranda-Filho DB, van der Linden V, Sobral PF, Ramos RCF, Rocha MAW, et al. Sleep EEG patterns in infants with congenital Zika virus syndrome. Clin Neurophysiol. 2017;128(1):204–14. doi: 10.1016/j.clinph.2016.11.004 27923187
51. Trevathan E. Editorial brain malformation surveillance in the Zika era. Birth Defects Res A Clin Mol Teratol. 2016;106(11):869–74. doi: 10.1002/bdra.23582 27891785
52. Oliveira-Filho J, Felzemburgh R, Costa F, Nery N, Mattos A, Henriques DF, et al. Seizures as a Complication of Congenital Zika Syndrome in Early Infancy. Am J Trop Med Hyg. 2018;98(6):1860–2. doi: 10.4269/ajtmh.17-1020 29692307
53. Cavalcanti DD, Alves LV, Furtado GJ, Santos CC, Feitosa FG, Ribeiro MC, et al. Echocardiographic findings in infants with presumed congenital Zika syndrome: Retrospective case series study. PLoS One. 2017;12(4):e0175065. doi: 10.1371/journal.pone.0175065 28426680
54. Orofino DHG, Passos SRL, de Oliveira RVC, Farias CVB, Leite M, Pone SM, et al. Cardiac findings in infants with in utero exposure to Zika virus- a cross sectional study. PLoS Negl Trop Dis. 2018;12(3):e0006362. doi: 10.1371/journal.pntd.0006362 29579059
55. Santana MB, Lamas CC, Athayde JG, Calvet G, Moreira J, De Lorenzo A. Congenital Zika syndrome: is the heart part of its spectrum? Clin Microbiol Infect. 2019;25(8):1043–4. doi: 10.1016/j.cmi.2019.03.020 30922930
56. Angelidou A, Michael Z, Hotz A, Friedman K, Emani S, LaRovere K, et al. Is There More to Zika? Complex Cardiac Disease in a Case of Congenital Zika Syndrome. Neonatology. 2018;113(2):177–82. doi: 10.1159/000484656 29248924
57. Resiere D, Ferge JL, Fabre J, Raad M, Aitsatou S, Inamo J, et al. Cardiovascular complications in patients with Zika virus-induced Guillain-Barre syndrome. J Clin Virol. 2018;98:8–9. doi: 10.1016/j.jcv.2017.11.002 29175232
58. Carta KG, Britto IJM, Meza Y, Morr I, Marques J, Flores VF, et al. Sex and gender differences in Zika myocarditis. 2019;73(9 Supplement 1):719.
59. Aletti M, Lecoules S, Kanczuga V, Soler C, Maquart M, Simon F, et al. Transient myocarditis associated with acute Zika virus infection. Clin Infect Dis. 2017;64(5):678–9. doi: 10.1093/cid/ciw802 27940942
60. Kearney MT, Cotton JM, Richardson PJ, Shah AM. Viral myocarditis and dilated cardiomyopathy: mechanisms, manifestations, and management. Postgrad Med J. 2001;77(903):4–10. doi: 10.1136/pmj.77.903.4 11123385
61. Mason JW. Myocarditis and dilated cardiomyopathy: an inflammatory link. Cardiovasc Res. 2003;60(1):5–10. doi: 10.1016/s0008-6363(03)00437-1 14522402
62. Schultz JC, Hilliard AA, Cooper LT Jr., Rihal CS. Diagnosis and treatment of viral myocarditis. Mayo Clin Proc. 2009;84(11):1001–9. doi: 10.1016/S0025-6196(11)60670-8 19880690
63. Maslen CL. Recent Advances in Placenta-Heart Interactions. Front Physiol. 2018;9:735. doi: 10.3389/fphys.2018.00735 29962966
64. Passemard S, Kaindl AM, Verloes A. Microcephaly. Handb Clin Neurol. 2013;111:129–41. doi: 10.1016/B978-0-444-52891-9.00013-0 23622158
65. Wichgers Schreur PJ, van Keulen L, Anjema D, Kant J, Kortekaas J. Microencephaly in fetal piglets following in utero inoculation of Zika virus. Emerg Microbes Infect. 2018;7(1):42. doi: 10.1038/s41426-018-0044-y 29593256
66. Sousa AQ, Cavalcante DIM, Franco LM, Araujo FMC, Sousa ET, Valenca-Junior JT, et al. Postmortem Findings for 7 Neonates with Congenital Zika Virus Infection. Emerg Infect Dis. 2017;23(7):1164–7. doi: 10.3201/eid2307.162019 28459414
67. Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, et al. Zika Virus Associated with Microcephaly. N Engl J Med. 2016;374(10):951–8. doi: 10.1056/NEJMoa1600651 26862926
68. Martines RB, Bhatnagar J, de Oliveira Ramos AM, Davi HP, Iglezias SD, Kanamura CT, et al. Pathology of congenital Zika syndrome in Brazil: a case series. Lancet. 2016;388(10047):898–904. doi: 10.1016/S0140-6736(16)30883-2 27372395
69. Acosta-Reyes J, Navarro E, Herrera MJ, Goenaga E, Ospina ML, Parra E, et al. Severe Neurologic Disorders in 2 Fetuses with Zika Virus Infection, Colombia. Emerg Infect Dis. 2017;23(6):982–4. doi: 10.3201/eid2306.161702 28296632
70. Manangeeswaran M, Ireland DD, Verthelyi D. Zika (PRVABC59) Infection Is Associated with T cell Infiltration and Neurodegeneration in CNS of Immunocompetent Neonatal C57Bl/6 Mice. PLoS Pathog. 2016;12(11):e1006004. doi: 10.1371/journal.ppat.1006004 27855206
71. van den Pol AN, Mao G, Yang Y, Ornaghi S, Davis JN. Zika Virus Targeting in the Developing Brain. J Neurosci. 2017;37(8):2161–75. doi: 10.1523/JNEUROSCI.3124-16.2017 28123079
72. Wen Z, Song H, Ming GL. How does Zika virus cause microcephaly? Genes Dev. 2017;31(9):849–61. doi: 10.1101/gad.298216.117 28566536
73. Suy A, Sulleiro E, Rodo C, Vazquez E, Bocanegra C, Molina I, et al. Prolonged Zika Virus Viremia during Pregnancy. N Engl J Med. 2016;375(26):2611–3.
74. Zorrilla CD, Garcia Garcia I, Garcia Fragoso L, De La Vega A. Zika Virus Infection in Pregnancy: Maternal, Fetal, and Neonatal Considerations. J Infect Dis. 2017;216(suppl_10):S891–S6. doi: 10.1093/infdis/jix448 29267916
75. Driggers RW, Ho CY, Korhonen EM, Kuivanen S, Jaaskelainen AJ, Smura T, et al. Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities. N Engl J Med. 2016;374(22):2142–51. doi: 10.1056/NEJMoa1601824 27028667
76. Meaney-Delman D, Oduyebo T, Polen KN, White JL, Bingham AM, Slavinski SA, et al. Prolonged Detection of Zika Virus RNA in Pregnant Women. Obstet Gynecol. 2016;128(4):724–30. doi: 10.1097/AOG.0000000000001625 27479770
77. Oliveira DB, Almeida FJ, Durigon EL, Mendes EA, Braconi CT, Marchetti I, et al. Prolonged Shedding of Zika Virus Associated with Congenital Infection. N Engl J Med. 2016;375(12):1202–4. doi: 10.1056/NEJMc1607583 27653589
78. Schaub B, Monthieux A, Najihoullah F, Harte C, Cesaire R, Jolivet E, et al. Late miscarriage: another Zika concern? Eur J Obstet Gynecol Reprod Biol. 2016;207:240–1. doi: 10.1016/j.ejogrb.2016.10.041 27837933
79. Gonce A, Martinez MJ, Marban-Castro E, Saco A, Soler A, Alvarez-Mora MI, et al. Spontaneous Abortion Associated with Zika Virus Infection and Persistent Viremia. Emerg Infect Dis. 2018;24(5):933–5. doi: 10.3201/eid2405.171479 29664372
80. van der Eijk AA, van Genderen PJ, Verdijk RM, Reusken CB, Mogling R, van Kampen JJ, et al. Miscarriage Associated with Zika Virus Infection. N Engl J Med. 2016;375(10):1002–4. doi: 10.1056/NEJMc1605898 27463941
81. Espósito DL, Ferreira AA, Moraes FM, Persona MR, dos Ribeiro B, Fábio SV, et al. Abortion rate is much higher than microcephaly rate in zika virus infections occurring in the first trimester of pregnancy. American Society of Tropical Medicine and Hygiene2017.
82. Rosenberg AZ, Yu W, Hill DA, Reyes CA, Schwartz DA. Placental Pathology of Zika Virus: Viral Infection of the Placenta Induces Villous Stromal Macrophage (Hofbauer Cell) Proliferation and Hyperplasia. Arch Pathol Lab Med. 2017;141(1):43–8. doi: 10.5858/arpa.2016-0401-OA 27681334
83. Rabelo K, de Souza Campos Fernandes RC, de Souza LJ, Louvain de Souza T, Dos Santos FB, Guerra Nunes PC, et al. Placental Histopathology and Clinical Presentation of Severe Congenital Zika Syndrome in a Human Immunodeficiency Virus-Exposed Uninfected Infant. Front Immunol. 2017;8:1704. doi: 10.3389/fimmu.2017.01704 29270171
84. Racicot K, Kwon JY, Aldo P, Silasi M, Mor G. Understanding the complexity of the immune system during pregnancy. Am J Reprod Immunol. 2014;72(2):107–16. doi: 10.1111/aji.12289 24995526
85. Silasi M, Cardenas I, Kwon JY, Racicot K, Aldo P, Mor G. Viral infections during pregnancy. Am J Reprod Immunol. 2015;73(3):199–213. doi: 10.1111/aji.12355 25582523
86. Textbook of Neonatal Resuscitation. 6th ed. Kattwinkel J, editor: American Academy of Pediatrics and American Heart Association; 2011. 328 p.
87. Edwards DK, Higgins CB, Gilpin EA. The cardiothoracic ratio in newborn infants. AJR Am J Roentgenol. 1981;136(5):907–13. doi: 10.2214/ajr.136.5.907 6784525
88. Tachibana M, Sparman M, Ramsey C, Ma H, Lee HS, Penedo MC, et al. Generation of chimeric rhesus monkeys. Cell. 2012;148(1–2):285–95. doi: 10.1016/j.cell.2011.12.007 22225614
89. Lo JO, Schabel MC, Roberts VH, Wang X, Lewandowski KS, Grant KA, et al. First trimester alcohol exposure alters placental perfusion and fetal oxygen availability affecting fetal growth and development in a non-human primate model. Am J Obstet Gynecol. 2017;216(3):302 e1–e8.
90. Hirsch AJ, Smith JL, Haese NN, Broeckel RM, Parkins CJ, Kreklywich C, et al. Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathog. 2017;13(3):e1006219. doi: 10.1371/journal.ppat.1006219 28278237
91. Greene JM, Dash P, Roy S, McMurtrey C, Awad W, Reed JS, et al. MR1-restricted mucosal-associated invariant T (MAIT) cells respond to mycobacterial vaccination and infection in nonhuman primates. Mucosal Immunol. 2017;10(3):802–13. doi: 10.1038/mi.2016.91 27759023
92. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1–64. doi: 10.1016/j.echo.2018.06.004 30282592
93. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23(5):465–95; quiz 576–7. doi: 10.1016/j.echo.2010.03.019 20451803
94. Liu Z, Neuringer M, Erdman JW Jr., Kuchan MJ, Renner L, Johnson EE, et al. The effects of breastfeeding versus formula-feeding on cerebral cortex maturation in infant rhesus macaques. Neuroimage. 2019;184:372–85. doi: 10.1016/j.neuroimage.2018.09.015 30201462
95. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825–41. doi: 10.1016/s1053-8119(02)91132-8 12377157
96. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56. doi: 10.1016/s1361-8415(01)00036-6 11516708
97. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage. 2009;48(1):63–72. doi: 10.1016/j.neuroimage.2009.06.060 19573611
98. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28. doi: 10.1016/j.neuroimage.2006.01.015 16545965
99. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12(1):26–41. doi: 10.1016/j.media.2007.06.004 17659998
100. Rohlfing T, Kroenke CD, Sullivan EV, Dubach MF, Bowden DM, Grant KA, et al. The INIA19 Template and NeuroMaps Atlas for Primate Brain Image Parcellation and Spatial Normalization. Front Neuroinform. 2012;6:27. doi: 10.3389/fninf.2012.00027 23230398
101. Wang X, Studholme C, Grigsby PL, Frias AE, Cuzon Carlson VC, Kroenke CD. Folding, But Not Surface Area Expansion, Is Associated with Cellular Morphological Maturation in the Fetal Cerebral Cortex. J Neurosci. 2017;37(8):1971–83. doi: 10.1523/JNEUROSCI.3157-16.2017 28069920
102. Knutsen AK, Kroenke CD, Chang YV, Taber LA, Bayly PV. Spatial and temporal variations of cortical growth during gyrogenesis in the developing ferret brain. Cereb Cortex. 2013;23(2):488–98. doi: 10.1093/cercor/bhs042 22368085
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome