Dynamic Extreme Aneuploidy (DEA) in the vegetable pathogen Phytophthora capsici and the potential for rapid asexual evolution
Autoři:
Jian Hu aff001; Sandesh Shrestha aff002; Yuxin Zhou aff003; Joann Mudge aff004; Xili Liu aff005; Kurt Lamour aff006
Působiště autorů:
College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
aff001; Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
aff002; College of Plant Protection, Nanjing Agricultural University, Nanjing, China
aff003; National Center for Genome Resources, Santa Fe, New Mexico, United States of America
aff004; College of Plant Pathology, China Agricultural University, Beijing, China
aff005; Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, Tennessee, United States of America
aff006
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227250
Souhrn
Oomycete plant pathogens are difficult to control and routine genetic research is challenging. A major problem is instability of isolates. Here we characterize >600 field and single zoospore isolates of Phytophthora capsici for inheritance of mating type, sensitivity to mefenoxam, chromosome copy number and heterozygous allele frequencies. The A2 mating type was highly unstable with 26% of 241 A2 isolates remaining A2. The A1 mating type was stable. Isolates intermediately resistant to mefenoxam produced fully resistant single-spore progeny. Sensitive isolates remained fully sensitive. Genome re-sequencing of single zoospore isolates revealed extreme aneuploidy; a phenomenon dubbed Dynamic Extreme Aneuploidy (DEA). DEA is characterized by the asexual inheritance of diverse intra-genomic combinations of chromosomal ploidy ranging from 2N to 3N and heterozygous allele frequencies that do not strictly correspond to ploidy. Isolates sectoring on agar media showed dramatically altered heterozygous allele frequencies. DEA can explain the rapid increase of advantageous alleles (e.g. drug resistance), mating type switches and copy neutral loss of heterozygosity (LOH). Although the mechanisms driving DEA are unknown, it can play an important role in adaptation and evolution and seriously hinders all aspects of P. capsici research.
Klíčová slova:
Alleles – Genetic loci – Genomic library construction – Genomics – Plant pathogens – Ploidy – Swimming – Phytophthora
Zdroje
1. Erwin DC, Ribeiro OK. Phytophthora diseases worldwide. St. Paul, Minn.: APS Press; 1996. xii, 562 p. p.
2. Kamoun S, Furzer O, Jones JD, Judelson HS, Ali GS, Dalio RJ, et al. The Top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol. 2015;16(4):413–34. Epub 2014/09/03. doi: 10.1111/mpp.12190 25178392.
3. Phytophthora Lamour K.: A Global Perspective. Cambridge, MA: CAB International; 2013. xi, 244 p. p.
4. Lamour K, Kamoun S. Oomycete genetics and genomics: diversity, interactions, and research tools. Hoboken, N.J.: Wiley-Blackwell; 2009. xvii, 574 p., 8 p. of plates p.
5. Lamour KH, Win J, Kamoun S. Oomycete genomics: new insights and future directions. FEMS Microbiol Lett. 2007;274(1):1–8. Epub 2007/06/15. doi: 10.1111/j.1574-6968.2007.00786.x 17559387.
6. Gevens AJ, Donahoo RS, Lamour KH, Hausbeck MK. Characterization of Phytophthora capsici from Michigan surface irrigation water. Phytopathology. 2007;97(4):421–8. Epub 2008/10/24. doi: 10.1094/PHYTO-97-4-0421 18943282.
7. Hurtado-Gonzales O, Aragon-Caballero L, Apaza-Tapia W, Donahoo R, Lamour K. Survival and spread of Phytophthora capsici in coastal Peru. Phytopathology. 2008;98(6):688–94. Epub 2008/10/24. doi: 10.1094/PHYTO-98-6-0688 18944293.
8. Lamour KH, Hausbeck MK. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology. 2000;90(4):396–400. Epub 2008/10/24. doi: 10.1094/PHYTO.2000.90.4.396 18944590.
9. Lamour KH, Hausbeck MK. The spatiotemporal genetic structure of Phytophthora capsici in Michigan and implications for disease management. Phytopathology. 2002;92(6):681–4. Epub 2008/10/24. doi: 10.1094/PHYTO.2002.92.6.681 18944269.
10. Lamour KH, Mudge J, Gobena D, Hurtado-Gonzales OP, Schmutz J, Kuo A, et al. Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Mol Plant Microbe Interact. 2012;25(10):1350–60. Epub 2012/06/21. doi: 10.1094/MPMI-02-12-0028-R 22712506; PubMed Central PMCID: PMC3551261.
11. Lamour KH, Stam R, Jupe J, Huitema E. The oomycete broad-host-range pathogen Phytophthora capsici. Mol Plant Pathol. 2012;13(4):329–37. Epub 2011/10/22. doi: 10.1111/j.1364-3703.2011.00754.x 22013895.
12. Hu J, Diao Y, Zhou Y, Lin D, Bi Y, Pang Z, et al. Loss of heterozygosity drives clonal diversity of Phytophthora capsici in China. PLoS One. 2013;8(12):e82691. Epub 2013/12/19. doi: 10.1371/journal.pone.0082691 24349339; PubMed Central PMCID: PMC3861455.
13. Hu J, Pang Z, Bi Y, Shao J, Diao Y, Guo J, et al. Genetically diverse long-lived clonal lineages of Phytophthora capsici from pepper in Gansu, China. Phytopathology. 2013;103(9):920–6. Epub 2013/04/05. doi: 10.1094/PHYTO-01-13-0016-R 23550971.
14. Hulvey J, Young J, Finley L, Lamour K. Loss of heterozygosity in Phytophthora capsici after N-ethyl-nitrosourea mutagenesis. Mycologia. 2010;102(1):27–32. Epub 2010/02/03. doi: 10.3852/09-102 20120225.
15. Lyon R, Correll J, Feng C, Bluhm B, Shrestha S, Shi A, et al. Population structure of Peronospora effusa in the Southwestern United States. PLoS One. 2016;11(2):e0148385. Epub 2016/02/02. doi: 10.1371/journal.pone.0148385 26828428; PubMed Central PMCID: PMC4734700.
16. Sansome E. Meiosis in the oogonium and antheridium of Pythium debaryanum Hesse. Nature. 1961;191:827–8. doi: 10.1038/191827a0
17. Sansome E. Meiosis in diploid and polyploid sex organs of Phytophthora and Achlya. Cytologia. 1965;30:103–17.
18. Caten CE, Jinks JL. Spontaneous variability of single isolates of Phytophthora infestans. I. Cultural variation. Canadian Journal of Botany. 1968;46:329–48.
19. Forche A, Abbey D, Pisithkul T, Weinzierl MA, Ringstrom T, Bruck D, et al. Stress alters rates and types of loss of heterozygosity in Candida albicans. MBio. 2011;2(4). Epub 2011/07/28. doi: 10.1128/mBio.00129-11 21791579; PubMed Central PMCID: PMC3143845.
20. Kumar Y, Yang J, Hu T, Chen L, Xu Z, Xu L, et al. Massive interstitial copy-neutral loss-of-heterozygosity as evidence for cancer being a disease of the DNA-damage response. BMC Med Genomics. 2015;8:42. Epub 2015/07/26. doi: 10.1186/s12920-015-0104-2 26208496; PubMed Central PMCID: PMC4515014.
21. Rosenberg SM. Stress-induced loss of heterozygosity in Candida: a possible missing link in the ability to evolve. MBio. 2011;2(5). Epub 2011/09/22. doi: 10.1128/mBio.00200-11 21933916; PubMed Central PMCID: PMC3175628.
22. Barchenger DW, Lamour KH, Sheu Z-M, Shrestha S, Kumar S, Lin S-W, et al. Intra- and intergenomic variation of ploidy and clonality characterize Phytophthora capsici on Capsicum sp. in Taiwan. Mycological Progress. 2017;16(10):955–63. doi: 10.1007/s11557-017-1330-0
23. Shrestha S, Hu J, Fryxell RT, Mudge J, Lamour K. SNP markers identify widely distributed clonal lineages of Phytophthora colocasiae in Vietnam, Hawaii and Hainan Island, China. Mycologia. 2014;106(4):676–85. Epub 2014/06/05. doi: 10.3852/13-165 24895424.
24. Lamour K, Finley L. A strategy for recovering high quality genomic DNA from a large number of Phytophthora isolates. Mycologia. 2006;98(3):514–7. Epub 2006/10/17. doi: 10.3852/mycologia.98.3.514 17040080.
25. Gobena D, McGrath MT, Lamour K. Survival and spread of Phytophthora capsici on Long Island, New York. Mycological Progress. 2012;11(3):761–8. doi: 10.1007/s11557-011-0787-5
26. Castro-Rocha A, Shrestha S, Lyon B, Grimaldo-Pantoja GL, Flores-Marges JP, Valero-Galván J, et al. An initial assessment of genetic diversity for Phytophthora capsici in northern and central Mexico. Mycological Progress. 2016;15(2):15. doi: 10.1007/s11557-016-1157-0
27. Castro-Rocha A, Hulvey JP, Wick R, Shrestha SK, Lamour K. Genetic diversity of Phytophthora capsici recovered from Massachusetts between 1997 and 2014. Mycological Progress. 2017;16(10):999–1006. doi: 10.1007/s11557-017-1334-9
28. Lamour KH, Hausbeck MK. The dynamics of mefenoxam insensitivity in a recombining population of Phytophthora capsici characterized with Amplified Fragment Length Polymorphism Markers. Phytopathology. 2001;91(6):553–7. Epub 2008/10/24. doi: 10.1094/PHYTO.2001.91.6.553 18943943.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy