#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Lean back and wait for the alarm? Testing an automated alarm system for nosocomial outbreaks to provide support for infection control professionals


Autoři: Christin Schröder aff001;  Luis Alberto Peña Diaz aff001;  Anna Maria Rohde aff001;  Brar Piening aff001;  Seven Johannes Sam Aghdassi aff001;  Georg Pilarski aff001;  Norbert Thoma aff001;  Petra Gastmeier aff001;  Rasmus Leistner aff001;  Michael Behnke aff001
Působiště autorů: Charité – Universitätsmedizin Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227955

Souhrn

Introduction

Outbreaks of communicable diseases in hospitals need to be quickly detected in order to enable immediate control. The increasing digitalization of hospital data processing offers potential solutions for automated outbreak detection systems (AODS). Our goal was to assess a newly developed AODS.

Methods

Our AODS was based on the diagnostic results of routine clinical microbiological examinations. The system prospectively counted detections per bacterial pathogen over time for the years 2016 and 2017. The baseline data covers data from 2013–2015. The comparative analysis was based on six different mathematical algorithms (normal/Poisson and score prediction intervals, the early aberration reporting system, negative binomial CUSUMs, and the Farrington algorithm). The clusters automatically detected were then compared with the results of our manual outbreak detection system.

Results

During the analysis period, 14 different hospital outbreaks were detected as a result of conventional manual outbreak detection. Based on the pathogens’ overall incidence, outbreaks were divided into two categories: outbreaks with rarely detected pathogens (sporadic) and outbreaks with often detected pathogens (endemic). For outbreaks with sporadic pathogens, the detection rate of our AODS ranged from 83% to 100%. Every algorithm detected 6 of 7 outbreaks with a sporadic pathogen. The AODS identified outbreaks with an endemic pathogen were at a detection rate of 33% to 100%. For endemic pathogens, the results varied based on the epidemiological characteristics of each outbreak and pathogen.

Conclusion

AODS for hospitals based on routine microbiological data is feasible and can provide relevant benefits for infection control teams. It offers in-time automated notification of suspected pathogen clusters especially for sporadically occurring pathogens. However, outbreaks of endemically detected pathogens need further individual pathogen-specific and setting-specific adjustments.

Klíčová slova:

Algorithms – Bacterial pathogens – Binomials – Clostridium difficile – Epidemiology – Infectious disease control – Pathogens – Toxins


Zdroje

1. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Henderson DK, Palmore TN, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Science translational medicine. 2012;4(148):148ra16–ra16.

2. Bergin SM, Periaswamy B, Barkham T, Chua HC, Mok YM, Fung DSS, et al. An Outbreak of Streptococcus pyogenes in a Mental Health Facility: Advantage of Well-Timed Whole-Genome Sequencing Over emm Typing. Infection control and hospital epidemiology. 2018:1–9.

3. Baker MA, Huang SS, Letourneau AR, Kaganov RE, Peeples JR, Drees M, et al. Lack of comprehensive outbreak detection in hospitals. infection control & hospital epidemiology. 2016;37(4):466–8.

4. Leclere B, Buckeridge DL, Boelle PY, Astagneau P, Lepelletier D. Automated detection of hospital outbreaks: A systematic review of methods. PLoS One. 2017;12(4):e0176438. doi: 10.1371/journal.pone.0176438 28441422

5. Buckeridge DL. Outbreak detection through automated surveillance: a review of the determinants of detection. Journal of biomedical informatics. 2007;40(4):370–9. doi: 10.1016/j.jbi.2006.09.003 17095301

6. Murdoch TB, Detsky AS. The inevitable application of big data to health care. Jama. 2013;309(13):1351–2. doi: 10.1001/jama.2013.393 23549579

7. Dessau RB, Steenberg P. Computerized surveillance in clinical microbiology with time series analysis. Journal of clinical microbiology. 1993;31(4):857–60. 8463397

8. Buehler JW, Hopkins RS, Overhage JM, Sosin DM, Tong V. Framework for evaluating public health surveillance systems for early detection of outbreaks: recommendations from the CDC Working Group. MMWR Recommendations and reports: Morbidity and mortality weekly report Recommendations and reports. 2004;53(Rr-5):1–11. 15129191

9. Rutjes AW, Reitsma JB, Coomarasamy A, Khan KS, Bossuyt PM. Evaluation of diagnostic tests when there is no gold standard. A review of methods. Health technology assessment (Winchester, England). 2007;11(50):iii, ix–51.

10. Grundmann H, Barwolff S, Tami A, Behnke M, Schwab F, Geffers C, et al. How many infections are caused by patient-to-patient transmission in intensive care units? Critical care medicine. 2005;33(5):946–51. doi: 10.1097/01.ccm.0000163223.26234.56 15891318

11. Nishiura H. Early detection of nosocomial outbreaks caused by rare pathogens: a case study employing score prediction interval. Osong Public Health Res Perspect. 2012;3(3):121–7. doi: 10.1016/j.phrp.2012.07.010 24159503

12. Hutwagner L, Thompson W, Seeman GM, Treadwell T. The bioterrorism preparedness and response Early Aberration Reporting System (EARS). J Urban Health. 2003;80(2 Suppl 1):i89–96. 12791783

13. Watkins RE, Eagleson S, Veenendaal B, Wright G, Plant AJ. Applying cusum-based methods for the detection of outbreaks of Ross River virus disease in Western Australia. BMC Med Inform Decis Mak. 2008;8:37. doi: 10.1186/1472-6947-8-37 18700044

14. Pelecanos AM, Ryan PA, Gatton ML. Outbreak detection algorithms for seasonal disease data: a case study using Ross River virus disease. BMC Med Inform Decis Mak. 2010;10:74. doi: 10.1186/1472-6947-10-74 21106104

15. Farrington CP, Andrews NJ, Beale AD, Catchpole MA. A Statistical Algorithm for the Early Detection of Outbreaks of Infectious Disease. Journal of the Royal Statistical Society Series A (Statistics in Society). 1996;159(3):547–63.

16. Kulldorff M, Heffernan R, Hartman J, Assuncao R, Mostashari F. A space-time permutation scan statistic for disease outbreak detection. PLoS medicine. 2005;2(3):e59. doi: 10.1371/journal.pmed.0020059 15719066

17. Miller JK, Chen J, Sundermann A, Marsh JW, Saul MI, Shutt KA, et al. Statistical outbreak detection by joining medical records and pathogen similarity. J Biomed Inform. 2019;91:103126. doi: 10.1016/j.jbi.2019.103126 30771483

18. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.

19. Salmon M, Schumacher D, Hohle M. Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance. J Stat Softw. 2016;70(10):1–35.

20. Stoesser N, Sheppard AE, Moore C, Golubchik T, Parry C, Nget P, et al. Extensive within-host diversity in fecally carried extended-spectrum beta-lactamase-producing Escherichia coli: implications for transmission analyses. Journal of clinical microbiology. 2015:JCM. 00378–15.

21. Gastmeier P, Stamm-Balderjahn S, Hansen S, Zuschneid I, Sohr D, Behnke M, et al. Where should one search when confronted with outbreaks of nosocomial infection? American journal of infection control. 2006;34(9):603–5. doi: 10.1016/j.ajic.2006.01.014 17097458

22. Sabat AJ, Budimir A, Nashev D, Sá-Leão R, Van Dijl JM, Laurent F, et al. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Eurosurveillance. 2013;18(4):20380. doi: 10.2807/ese.18.04.20380-en 23369389

23. Fricker RD, Hegler BL Jr., Dunfee DA. Comparing syndromic surveillance detection methods: EARS' versus a CUSUM-based methodology. Stat Med. 2008;27(17):3407–29. doi: 10.1002/sim.3197 18240128

24. Guillou A, Kratz M, Strat YL. An extreme value theory approach for the early detection of time clusters. A simulation-based assessment and an illustration to the surveillance of Salmonella. Statistics in medicine. 2014;33(28):5015–27. doi: 10.1002/sim.6275 25060768

25. Unkel S, Farrington C, Garthwaite PH, Robertson C, Andrews N. Statistical methods for the prospective detection of infectious disease outbreaks: a review. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2012;175(1):49–82.

26. Bedubourg G, Le Strat Y. Evaluation and comparison of statistical methods for early temporal detection of outbreaks: A simulation-based study. PLoS One. 2017;12(7):e0181227. doi: 10.1371/journal.pone.0181227 28715489

27. Remschmidt C, Schroder C, Behnke M, Gastmeier P, Geffers C, Kramer TS. Continuous increase of vancomycin resistance in enterococci causing nosocomial infections in Germany—10 years of surveillance. Antimicrobial resistance and infection control. 2018;7:54. doi: 10.1186/s13756-018-0353-x 29760912

28. Raven KE, Gouliouris T, Brodrick H, Coll F, Brown NM, Reynolds R, et al. Complex routes of nosocomial vancomycin-resistant Enterococcus faecium transmission revealed by genome sequencing. Clinical infectious diseases. 2017;64(7):886–93. doi: 10.1093/cid/ciw872 28362945

29. Ulrich N, Vonberg RP, Gastmeier P. Outbreaks caused by vancomycin-resistant Enterococcus faecium in hematology and oncology departments: A systematic review. Heliyon. 2017;3(12):e00473. doi: 10.1016/j.heliyon.2017.e00473 29322099

30. Leffler DA, Lamont JT. Clostridium difficile infection. New England Journal of Medicine. 2015;372(16):1539–48. doi: 10.1056/NEJMra1403772 25875259

31. Eyre DW, Cule ML, Walker AS, Crook DW, Wilcox MH, Peto TE. Hospital and community transmission of Clostridium difficile: a whole genome sequencing study. The Lancet. 2012;380:S12.


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#