Population-based estimates of humoral autoimmunity from the U.S. National Health and Nutrition Examination Surveys, 1960–2014
Autoři:
Charles F. Dillon aff001; Michael H. Weisman aff002; Frederick W. Miller aff001
Působiště autorů:
National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland, United States of America
aff001; Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226516
Souhrn
Objective
Based on US National Health and Nutrition Examination Survey (NHANES) data, we attempted to provide an unbiased, population-based estimate of autoantibody prevalence overall and by age and sex.
Methods
US autoantibody prevalence estimates for detectable rheumatoid factor, anti-thyroglobulin, anti-thyroperoxidase, anti-transglutaminase, anti-endomysial, anti-GAD65, antinuclear autoantibodies, and autoantibodies to extractable nuclear antigens were estimated from the 1960–1962 National Health Examination Survey, NHANES III (1988–1994), and the NHANES 1999–2014 cross-sectional surveys. Survey design variables and sample weights were used to account for differential probabilities of selection within the complex survey design. Data analysis used SASTM and SUDAAN™ software. US Census Bureau data were used to estimate the absolute numbers of persons with autoantibodies.
Results
NHANES III data show that the overall US prevalence of having a detectable serum autoantibody is substantial in adults, in both women and men. Thyroid autoantibodies were present in 18% of US adults (31 million persons) including 10% of younger adults and 25% of older persons. Overall autoantibody prevalences increased significantly with age: 32% of US adults 60+ years of age (12.8 million persons) had at least one of the four autoantibodies rheumatoid factor, anti-thyroglobulin, anti-thyroperoxidase, or anti-tissue transglutaminase. Older women had higher levels of autoantibodies, but this was a relative difference. Autoantibody prevalence in both sexes was substantial (women 39%; men 22%). Fourteen percent of adults 60+ years of age have multiple autoantibodies.
Conclusions
Autoantibodies are present in a significant fraction of the general population, especially in older adults and women relative to men. Although all known clinically significant autoantibodies were not analyzed, these data provide an important population perspective on the scope and magnitude of humoral autoimmunity in the US. This is vital for prevention efforts to reduce autoimmune disease and helps clarify the potential impact of autoimmunity on the general population.
Klíčová slova:
Autoantibodies – Autoimmune diseases – diabetes mellitus – Nutrition – Rheumatoid arthritis – Thyroid – United States – Autoimmunity
Zdroje
1. Greenbaum C, Lord S, VanBuecken D. Emerging Concepts on Disease-Modifying Therapies in Type 1 Diabetes. Curr Diab Rep. 2017;17(11):119. Epub 2017/10/19. doi: 10.1007/s11892-017-0932-x 29039056.
2. Lleo A, Invernizzi P, Gao B, Podda M, Gershwin ME. Definition of human autoimmunity—autoantibodies versus autoimmune disease. AutoimmunRev. 2010;9(5):A259–A66.
3. Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015;278(4):369–95. Epub 2015/07/28. doi: 10.1111/joim.12395 26212387.
4. Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, et al. Mechanisms of Autoantibody-Induced Pathology. Front Immunol. 2017;8:603. Epub 2017/06/18. doi: 10.3389/fimmu.2017.00603 28620373; PubMed Central PMCID: PMC5449453.
5. Gunther J, Rademacher J, van Laar JM, Siegert E, Riemekasten G. Functional autoantibodies in systemic sclerosis. Semin Immunopathol. 2015;37(5):529–42. Epub 2015/08/22. doi: 10.1007/s00281-015-0513-5 26292621.
6. Malviya M, Barman S, Golombeck KS, Planaguma J, Mannara F, Strutz-Seebohm N, et al. NMDAR encephalitis: passive transfer from man to mouse by a recombinant antibody. Ann Clin Transl Neurol. 2017;4(11):768–83. Epub 2017/11/22. doi: 10.1002/acn3.444 29159189; PubMed Central PMCID: PMC5682115.
7. Borradori L, Caldwell JB, Briggaman RA, Burr CE, Gammon WR, James WD, et al. Passive transfer of autoantibodies from a patient with mutilating epidermolysis bullosa acquisita induces specific alterations in the skin of neonatal mice. Arch Dermatol. 1995;131(5):590–5. Epub 1995/05/01. 7741548.
8. Verschuuren J, Plomp JJ, Burden SJ, Zhang W, Fillie-Grijpma YE, Stienstra-van Es IE, et al. Passive transfer models of myasthenia gravis with muscle-specific kinase antibodies. Ann N Y Acad Sci. 2018;1413(1):111–8. Epub 2018/01/23. doi: 10.1111/nyas.13543 29356029.
9. Caforio AL, Angelini A, Blank M, Shani A, Kivity S, Goddard G, et al. Passive transfer of affinity-purified anti-heart autoantibodies (AHA) from sera of patients with myocarditis induces experimental myocarditis in mice. Int J Cardiol. 2015;179:166–77. Epub 2014/12/03. doi: 10.1016/j.ijcard.2014.10.165 25464438.
10. Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84(3):223–43. doi: 10.1006/clin.1997.4412 9281381.
11. Cooper GS, Stroehla BC. The epidemiology of autoimmune diseases. Autoimmun Rev. 2003;2(3):119–25. doi: 10.1016/s1568-9972(03)00006-5 12848952.
12. Troyanov Y, Targoff IN, Payette MP, Raynauld JP, Chartier S, Goulet JR, et al. Redefining dermatomyositis: a description of new diagnostic criteria that differentiate pure dermatomyositis from overlap myositis with dermatomyositis features. Medicine (Baltimore). 2014;93(24):318–32. Epub 2014/12/17. doi: 10.1097/md.0000000000000222 25500701; PubMed Central PMCID: PMC4602434.
13. Psianou K, Panagoulias I, Papanastasiou AD, de Lastic AL, Rodi M, Spantidea PI, et al. Clinical and immunological parameters of Sjogren's syndrome. Autoimmun Rev. 2018;17(10):1053–64. Epub 2018/08/14. doi: 10.1016/j.autrev.2018.05.005 30103041.
14. Cooper GS, Bynum ML, Somers EC. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun. 2009;33(3–4):197–207. doi: 10.1016/j.jaut.2009.09.008 19819109; PubMed Central PMCID: PMC2783422.
15. Majka DS, Chang RW. Is preclinical autoimmunity benign?: The case of cardiovascular disease. Rheum Dis Clin North Am. 2014;40(4):659–68. Epub 2014/12/02. doi: 10.1016/j.rdc.2014.07.006 25437283; PubMed Central PMCID: PMC4878909.
16. Majka DS, Liu K, Pope RM, Karlson EW, Vu TH, Teodorescu M, et al. Antiphospholipid antibodies and sub-clinical atherosclerosis in the Coronary Artery Risk Development in Young Adults (CARDIA) cohort. Inflamm Res. 2013;62(10):919–27. Epub 2013/08/21. doi: 10.1007/s00011-013-0652-x 23959159; PubMed Central PMCID: PMC4122510.
17. Edwards CJ, Syddall H, Goswami R, Goswami P, Dennison EM, Arden NK, et al. The autoantibody rheumatoid factor may be an independent risk factor for ischaemic heart disease in men. Heart. 2007;93(10):1263–7. Epub 2007/06/07. doi: 10.1136/hrt.2006.097816 17550930; PubMed Central PMCID: PMC2000921.
18. Solow EB, Vongpatanasin W, Skaug B, Karp DR, Ayers C, de Lemos JA. Antinuclear Antibodies Are Associated With All-Cause Mortality and Cardiovascular Outcomes in the General Population. J Am Coll Cardiol. 2015;65(24):2669–70. Epub 2015/06/20. doi: 10.1016/j.jacc.2015.03.578 26088310.
19. Solow EB, Vongpatanasin W, Skaug B, Karp DR, Ayers C, de Lemos JA. Antinuclear antibodies in the general population: positive association with inflammatory and vascular biomarkers but not traditional cardiovascular risk factors. Clin Exp Rheumatol. 2018;36(6):1031–7. Epub 2018/10/10. 30299240.
20. Ferri C, Manfredi A, Sebastiani M, Colaci M, Giuggioli D, Vacchi C, et al. Interstitial pneumonia with autoimmune features and undifferentiated connective tissue disease: Our interdisciplinary rheumatology-pneumology experience, and review of the literature. Autoimmun Rev. 2016;15(1):61–70. Epub 2015/09/20. doi: 10.1016/j.autrev.2015.09.003 26384526.
21. Meier LA, Binstadt BA. The Contribution of Autoantibodies to Inflammatory Cardiovascular Pathology. Front Immunol. 2018;9:911. Epub 2018/05/15. doi: 10.3389/fimmu.2018.00911 29755478; PubMed Central PMCID: PMC5934424.
22. Spinillo A, Beneventi F, Locatelli E, Ramoni V, Caporali R, Alpini C, et al. Early, Incomplete, or Preclinical Autoimmune Systemic Rheumatic Diseases and Pregnancy Outcome. Arthritis Rheumatol. 2016;68(10):2555–62. Epub 2016/05/10. doi: 10.1002/art.39737 27158919.
23. Panaitescu AM, Nicolaides K. Maternal autoimmune disorders and fetal defects. J Matern Fetal Neonatal Med. 2018;31(13):1798–806. Epub 2017/06/20. doi: 10.1080/14767058.2017.1326904 28627279.
24. van Dijk MM, Smits IH, Fliers E, Bisschop PH. Maternal Thyrotropin Receptor Antibody Concentration and the Risk of Fetal and Neonatal Thyrotoxicosis: A Systematic Review. Thyroid. 2018;28(2):257–64. Epub 2018/01/13. doi: 10.1089/thy.2017.0413 29325496.
25. Miliaresis C IP, Buyon JP, Phoon CKL, Friedman D. Neonatal Lupus: Pathogenesis and Clinical Approaches. In: Wallace DJ HB, editor. Dubois’ Lupus Erythematosus and Related Syndromes. 9 ed. Philadelphia: Elsevier; 2018. p. 486–98.
26. De Leo S, Pearce EN. Autoimmune thyroid disease during pregnancy. Lancet Diabetes Endocrinol. 2018;6(7):575–86. Epub 2017/12/17. doi: 10.1016/S2213-8587(17)30402-3 29246752.
27. Korevaar TIM, Derakhshan A, Taylor PN, Meima M, Chen L, Bliddal S, et al. Association of Thyroid Function Test Abnormalities and Thyroid Autoimmunity With Preterm Birth: A Systematic Review and Meta-analysis. Jama. 2019;322(7):632–41. Epub 2019/08/21. doi: 10.1001/jama.2019.10931 31429897; PubMed Central PMCID: PMC6704759.
28. Bourn R, James JA. Preclinical lupus. Curr Opin Rheumatol. 2015;27(5):433–9. Epub 2015/07/01. doi: 10.1097/BOR.0000000000000199 26125103; PubMed Central PMCID: PMC4651850.
29. Robertson JM, James JA. Preclinical systemic lupus erythematosus. Rheum Dis Clin North Am. 2014;40(4):621–35. Epub 2014/12/02. doi: 10.1016/j.rdc.2014.07.004 25437281; PubMed Central PMCID: PMC4301850.
30. James JA, Chen H, Young KA, Bemis EA, Seifert J, Bourn RL, et al. Latent autoimmunity across disease-specific boundaries in at-risk first-degree relatives of SLE and RA patients. EBioMedicine. 2019;42:76–85. Epub 2019/04/07. doi: 10.1016/j.ebiom.2019.03.063 30952617; PubMed Central PMCID: PMC6491794.
31. Deane KD. Preclinical Rheumatoid Arthritis and Rheumatoid Arthritis Prevention. Curr Rheumatol Rep. 2018;20(8):50. Epub 2018/06/28. doi: 10.1007/s11926-018-0754-0 29946747.
32. Gerlag DM, Safy M, Maijer KI, Tang MW, Tas SW, Starmans-Kool MJF, et al. Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: the PRAIRI study. Ann Rheum Dis. 2019;78(2):179–85. Epub 2018/12/07. doi: 10.1136/annrheumdis-2017-212763 30504445.
33. Simmons K, Michels AW. Lessons from type 1 diabetes for understanding natural history and prevention of autoimmune disease. Rheum Dis Clin North Am. 2014;40(4):797–811. Epub 2014/12/02. doi: 10.1016/j.rdc.2014.07.008 25437293; PubMed Central PMCID: PMC4250578.
34. Herold KC, Bundy BN, Long SA, Bluestone JA, DiMeglio LA, Dufort MJ, et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. N Engl J Med. 2019;381(7):603–13. Epub 2019/06/11. doi: 10.1056/NEJMoa1902226 31180194; PubMed Central PMCID: PMC6776880.
35. Olsen NJ, James JA, Arriens C, Ishimori ML, Wallace DJ, Kamen DL, et al. Study of Anti-Malarials in Incomplete Lupus Erythematosus (SMILE): study protocol for a randomized controlled trial. Trials. 2018;19(1):694. Epub 2018/12/24. doi: 10.1186/s13063-018-3076-7 30572906; PubMed Central PMCID: PMC6302430.
36. Walsh SJ, Rau LM. Autoimmune diseases: a leading cause of death among young and middle-aged women in the United States. American Journal of Public Health. 2000;90(9):1463–6. doi: 10.2105/ajph.90.9.1463 10983209
37. Rubin RL. Drug-induced lupus. Expert Opinion on Drug Safety. 2015;14(3):361–78. Epub 2015/01/03. doi: 10.1517/14740338.2015.995089 25554102.
38. Xiao X, Chang C. Diagnosis and classification of drug-induced autoimmunity (DIA). J Autoimmun. 2014;48–49:66–72. Epub 2014/01/25. doi: 10.1016/j.jaut.2014.01.005 24456934.
39. Pollard KM, Hultman P, Kono DH. Toxicology of Autoimmune Diseases. Chem Res Toxicol. 2010;23(3):455–66. doi: 10.1021/tx9003787 20078109
40. Pollard KM, Christy JM, Cauvi DM, Kono DH. Environmental Xenobiotic Exposure and Autoimmunity. Curr Opin Toxicol. 2018;10:15–22. Epub 2018/03/06. doi: 10.1016/j.cotox.2017.11.009 29503968; PubMed Central PMCID: PMC5831116.
41. Winter WE, Schatz DA. Autoimmune markers in diabetes. Clin Chem. 2011;57(2):168–75. Epub 2010/12/04. doi: 10.1373/clinchem.2010.148205 21127152.
42. Jacobsen LM, Haller MJ, Schatz DA. Understanding Pre-Type 1 Diabetes: The Key to Prevention. Front Endocrinol (Lausanne). 2018;9:70. Epub 2018/03/22. doi: 10.3389/fendo.2018.00070 29559955; PubMed Central PMCID: PMC5845548.
43. Tracy A, Buckley CD, Raza K. Pre-symptomatic autoimmunity in rheumatoid arthritis: when does the disease start? Semin Immunopathol. 2017;39(4):423–35. Epub 2017/03/25. doi: 10.1007/s00281-017-0620-6 28337522; PubMed Central PMCID: PMC5486797.
44. Rasch EK, Hirsch R, Paulose-Ram R, Hochberg MC. Prevalence of rheumatoid arthritis in persons 60 years of age and older in the United States: effect of different methods of case classification. Arthritis Rheum. 2003;48(4):917–26. Epub 2003/04/11. doi: 10.1002/art.10897 12687533.
45. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99. Epub 2002/02/12. doi: 10.1210/jcem.87.2.8182 11836274.
46. Surks MI, Hollowell JG. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J Clin Endocrinol Metab. 2007;92(12):4575–82. Epub 2007/10/04. doi: 10.1210/jc.2007-1499 17911171.
47. Barinas-Mitchell E, Pietropaolo S, Zhang YJ, Henderson T, Trucco M, Kuller LH, et al. Islet cell autoimmunity in a triethnic adult population of the Third National Health and Nutrition Examination Survey. Diabetes. 2004;53(5):1293–302. doi: 10.2337/diabetes.53.5.1293 15111499
48. Rubio-Tapia A, Ludvigsson JF, Brantner TL, Murray JA, Everhart JE. The prevalence of celiac disease in the United States. Am J Gastroenterol. 2012;107(10):1538–44; quiz 7, 45. Epub 2012/08/02. doi: 10.1038/ajg.2012.219 22850429.
49. Satoh M, Chan EK, Ho LA, Rose KM, Parks CG, Cohn RD, et al. Prevalence and sociodemographic correlates of antinuclear antibodies in the United States. Arthritis Rheum. 2012;64(7):2319–27. doi: 10.1002/art.34380 22237992
50. Plan and operation of the Third National Health and Nutrition Examination Survey, 1988–94. Series 1: programs and collection procedures. Vital Health Stat 1. 1994;(32):1–407. Epub 1994/07/01. 7975354.
51. Curtin LR, Mohadjer LK, Dohrmann SM, Kruszon-Moran D, Mirel LB, Carroll MD, et al. National Health and Nutrition Examination Survey: sample design, 2007–2010. Vital Health Stat 2. 2013;(160):1–23. Epub 2014/08/05. 25090039.
52. NHANES Response Rates and Population Totals [Dec. 18, 2018]. Available from: https://wwwn.cdc.gov/nchs/nhanes/ResponseRates.aspx.
53. National Health and Nutrition Examination Survey. NHANES Questionnaires, Datasets and Related Documentation. [January 16, 2019]. Available from: https://wwwn.cdc.gov/nchs/nhanes/.
54. Engel A, Roberts J, Burch TA. Rheumatoid arthritis in adults. Vital Health Stat 11. 1966;(17):1–43. Epub 1966/09/01. 5296897.
55. Gunter EW, Lewis BG, Koncikowski SM. Antithyroglobulin in Serum, NHANES III VII-EE-(1–17): Laboratory Procedures Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994: U.S. DHHS Public Health Service National Center for Environmental Health & National Center for Health Statistics; 1996 [Dec. 18, 2018]. Available from: https://wwwn.cdc.gov/nchs/data/nhanes3/manuals/labman.pdf.
56. Gunter EW, Lewis BG, Koncikowski SM. Anti-Microsomal Antibody in Serum—NHANES III VII-FF-(1–15): Laboratory Procedures Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994: U.S. DHHS Public Health Service National Center for Environmental Health & National Center for Health Statistics; 1996 [Dec. 18, 2018]. Available from: https://wwwn.cdc.gov/nchs/data/nhanes3/manuals/labman.pdf.
57. National Health and Nutrition Examination Survey 2001–2002 Data Documentation, Codebook, and Frequencies Thyroid Profile (Surplus) (SSNH4THY) 2011 [Dec. 18, 2018]. Available from: https://wwwn.cdc.gov/Nchs/Nhanes/2001-2002/SSNH4THY.htm.
58. National Health and Nutrition Examination Survey 2011–2012 Data Documentation, Codebook, and Frequencies Thyroid Profile (THYROD_G) 2014 [Dec. 18, 2018]. Available from: https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/THYROD_G.htm.
59. Murray J. National Health and Nutrition Examination Survey Laboratory Procedure Manual: Analyte: Tissue Transglutaminase Assay (IgA) 2015 [Dec. 19, 2018]. Available from: https://wwwn.cdc.gov/nchs/data/nhanes/2013-2014/labmethods/TGEMA_H_MET_TTG.PDF.
60. Murray J. National Health and Nutrition Examination Survey Laboratory Procedure Manual Analyte: Endomysial Antibody Assay (EMA) [Dec. 19, 2018]. Available from: https://wwwn.cdc.gov/nchs/data/nhanes/2013-2014/labmethods/TGEMA_H_MET_EMA.PDF.
61. Grubin CE, Daniels T, Toivola B, Landin-Olsson M, Hagopian WA, Li L, et al. A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM. Diabetologia. 1994;37(4):344–50. Epub 1994/04/01. doi: 10.1007/bf00408469 8063033.
62. US National Health & Nutrition Examination Survey. NHANES III Augmented Data and Special Studies: 24A. Surplus Sera Laboratory Component: Antibody to GAD65 2006 [Dec. 19, 2018]. Available from: https://wwwn.cdc.gov/nchs/data/nhanes3/24a/SSGAD.pdf.
63. National Health and Nutrition Examination Survey 1999–2000 Data Documentation, Codebook, and Frequencies Autoantibodies—Immunofluorescence & Immunoprecipitation Analyses (Surplus) (SSANA_A) 2012 [Dec. 19, 2018]. Available from: https://wwwn.cdc.gov/Nchs/Nhanes/1999-2000/SSANA_A.htm.
64. Reeves WH, Satoh M, Lyons R, Nichols C, Narain S. Detection of autoantibodies against proteins and ribonucleoproteins by double immunodiffusion, immunoprecipitation, and western blotting. In: Rose NR, Hamilton RG, Detrick B, Reeves WH, editors. Manual of Molecular and Clinical Laboratory Immunology. 7. Washington, D.C.: American Society of Microbiology Press; 2008. p. 1007–18.
65. Bozicevich J, Bunim JJ, Freund J, Ward SB. Bentonite flocculation test for rheumatoid arthritis. Proc Soc Exp Biol Med. 1958;97(1):180–3. Epub 1958/01/01. doi: 10.3181/00379727-97-23681 13518214.
66. Gunter EW, Lewis BG, Koncikowski SM. Rheumatoid Factor in Serum, NHANES III, in Laboratory Procedures Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. 1996:VII-S-(1–15).
67. Reeves WH SM, Lyons R, Nichols C, Narain S. Detection of autoantibodies against proteins and ribonucleoproteins by double immunodiffusion, immunoprecipitation, and western blotting. In: Detrick B, Hamilton RG, Folds JD, editors. Manual of Molecular and Clinical Lab Immunology. 7th ed: American Society for Microbiology Press; 2006. p. 1007–18.
68. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2010;69(9):1580–8. Epub 2010/08/12. doi: 10.1136/ard.2010.138461 20699241.
69. Skinner CJ, Holt D, Smith TMF. Analysis of complex surveys: Wiley; 1989.
70. Analytic and Reporting Guidelines: The Third National Health and Nutrition Examination Survey, NHANES III (1988–1994). Appendix B: Joint Policy on Variance Estimation and Statistical Reporting. Standards on NHANES III and CSFII Reports: HNIS/ NCHS Analytic Working Group Recommendations, September 23, 1993 1996 [Dec. 19, 2018]. Available from: https://wwwn.cdc.gov/nchs/data/nhanes3/manuals/nh3gui.pdf.
71. Couchman KG, Wigley RD, Prior IA. Autoantibodies in the Carterton population survey. The prevalence of thyroid and gastric antibodies, antinuclear and rheumatoid factors, in a probability based population sample. J Chronic Dis. 1970;23(1):45–53. Epub 1970/06/01. doi: 10.1016/0021-9681(70)90108-6 4915093.
72. Haller-Kikkatalo K, Alnek K, Metspalu A, Mihailov E, Metskula K, Kisand K, et al. Demographic associations for autoantibodies in disease-free individuals of a European population. Sci Rep. 2017;7:44846. Epub 2017/03/30. doi: 10.1038/srep44846 28349935; PubMed Central PMCID: PMC5368634.
73. Iseme RA, McEvoy M, Kelly B, Agnew L, Walker FR, Boyle M, et al. A Cross-Sectional Study of the Association between Autoantibodies and Qualitative Ultrasound Index of Bone in an Elderly Sample without Clinical Autoimmune Disease. J Immunol Res. 2018;2018:9407971. Epub 2018/06/02. doi: 10.1155/2018/9407971 29854851; PubMed Central PMCID: PMC5952466.
74. Gale EA, Gillespie KM. Diabetes and gender. Diabetologia. 2001;44(1):3–15. Epub 2001/02/24. doi: 10.1007/s001250051573 11206408.
75. von Stemann JH, Rigas AS, Thorner LW, Rasmussen DGK, Pedersen OB, Rostgaard K, et al. Prevalence and correlation of cytokine-specific autoantibodies with epidemiological factors and C-reactive protein in 8,972 healthy individuals: Results from the Danish Blood Donor Study. PLoS One. 2017;12(6):e0179981. Epub 2017/07/01. doi: 10.1371/journal.pone.0179981 28665954; PubMed Central PMCID: PMC5493339.
76. Prete M, Racanelli V, Digiglio L, Vacca A, Dammacco F, Perosa F. Extra-articular manifestations of rheumatoid arthritis: An update. Autoimmun Rev. 2011;11(2):123–31. Epub 2011/09/24. doi: 10.1016/j.autrev.2011.09.001 21939785.
77. Demoruelle MK, Weisman MH, Simonian PL, Lynch DA, Sachs PB, Pedraza IF, et al. Brief report: airways abnormalities and rheumatoid arthritis-related autoantibodies in subjects without arthritis: early injury or initiating site of autoimmunity? Arthritis Rheum. 2012;64(6):1756–61. Epub 2011/12/21. doi: 10.1002/art.34344 22183986; PubMed Central PMCID: PMC3319006.
78. Hwang J, Song JU, Ahn JK. Decline of Pulmonary Function Is Associated With the Presence of Rheumatoid Factor in Korean Health Screening Subjects Without Clinically Apparent Lung Disease: A Cross-Sectional Study. Medicine (Baltimore). 2016;95(19):e3668. Epub 2016/05/14. doi: 10.1097/md.0000000000003668 27175698; PubMed Central PMCID: PMC4902540.
79. Frohlich E, Wahl R. Thyroid Autoimmunity: Role of Anti-thyroid Antibodies in Thyroid and Extra-Thyroidal Diseases. Front Immunol. 2017;8:521. Epub 2017/05/26. doi: 10.3389/fimmu.2017.00521 28536577; PubMed Central PMCID: PMC5422478.
80. Negro R, Schwartz A, Gismondi R, Tinelli A, Mangieri T, Stagnaro-Green A. Thyroid antibody positivity in the first trimester of pregnancy is associated with negative pregnancy outcomes. J Clin Endocrinol Metab. 2011;96(6):E920–4. Epub 2011/03/18. doi: 10.1210/jc.2011-0026 21411559.
81. Rubio-Tapia A, Ludvigsson JF, Choung RS, Brantner TL, Rajkumar SV, Landgren O, et al. Increased mortality among men aged 50 years old or above with elevated IgA anti-transglutaminase antibodies: NHANES III. BMC Gastroenterol. 2016;16(1):136. Epub 2016/11/05. doi: 10.1186/s12876-016-0547-8 27809801; PubMed Central PMCID: PMC5093944.
82. Bross ID. Why proof of safety is much more difficult than proof of hazard. Biometrics. 1985;41(3):785–93. Epub 1985/09/01. 4074828.
83. Humphreys JH, van Nies JA, Chipping J, Marshall T, van der Helm-van Mil AH, Symmons DP, et al. Rheumatoid factor and anti-citrullinated protein antibody positivity, but not level, are associated with increased mortality in patients with rheumatoid arthritis: results from two large independent cohorts. Arthritis Res Ther. 2014;16(6):483. Epub 2014/12/05. doi: 10.1186/s13075-014-0483-3 25471696; PubMed Central PMCID: PMC4272533.
84. Nielsen SF, Bojesen SE, Schnohr P, Nordestgaard BG. Elevated rheumatoid factor and long term risk of rheumatoid arthritis: a prospective cohort study. Bmj. 2012;345:e5244. Epub 2012/09/08. doi: 10.1136/bmj.e5244 22956589; PubMed Central PMCID: PMC3435445.
85. Miller FW, Waite KA, Biswas T, Plotz PH. The role of an autoantigen, histidyl-tRNA synthetase, in the induction and maintenance of autoimmunity. Proc Natl Acad Sci U S A. 1990;87(24):9933–7. doi: 10.1073/pnas.87.24.9933 1702223; PubMed Central PMCID: PMC55288.
86. Miller FW, Twitty SA, Biswas T, Plotz PH. Origin and regulation of a disease-specific autoantibody response. Antigenic epitopes, spectrotype stability, and isotype restriction of anti-Jo-1 autoantibodies. Journal of Clinical Investigation. 1990;85:468–75. doi: 10.1172/JCI114461 1688885; PubMed Central PMCID: PMC296447.
87. Davis P, Percy JS, Russell AS. Correlation between levels of DNA antibodies and clinical disease activity in SLE. Ann Rheum Dis. 1977;36(2):157–9. Epub 1977/04/01. doi: 10.1136/ard.36.2.157 857742; PubMed Central PMCID: PMC1006651.
88. Stohl W, Hiepe F, Latinis KM, Thomas M, Scheinberg MA, Clarke A, et al. Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum. 2012;64(7):2328–37. Epub 2012/01/26. doi: 10.1002/art.34400 22275291; PubMed Central PMCID: PMC3350827.
89. Mauro FR, Trastulli F, Alessandri C, Valesini G, Giovannetti G, Riemma C, et al. Clinical relevance of silent red blood cell autoantibodies. Haematologica. 2017;102(12):e473–e5. Epub 2017/09/25. doi: 10.3324/haematol.2017.177675 28935848; PubMed Central PMCID: PMC5709114.
90. Bizzaro N, Antico A. Diagnosis and classification of pernicious anemia. Autoimmun Rev. 2014;13(4–5):565–8. Epub 2014/01/16. doi: 10.1016/j.autrev.2014.01.042 24424200.
91. Rusak E, Chobot A, Krzywicka A, Wenzlau J. Anti-parietal cell antibodies—diagnostic significance. Adv Med Sci. 2016;61(2):175–9. Epub 2016/02/27. doi: 10.1016/j.advms.2015.12.004 26918709.
92. Tunbridge WM, Vanderpump MP. Population screening for autoimmune thyroid disease. Endocrinol Metab Clin North Am. 2000;29(2):239–53, v. Epub 2000/06/30. doi: 10.1016/s0889-8529(05)70129-8 10874527.
93. McQuillan GM, McLean JE, Chiappa M, Corporation H, Lukacs SL. National Health and Nutrition Examination Survey Biospecimen Program: NHANES III (1988–1994) and NHANES 1999–2014. Vital Health Stat 2. 2015;(170):1–14. Epub 2015/07/30. 26222898.
94. Dillon CF, Weisman MH. US National Health and Nutrition Examination Survey Arthritis Initiatives, Methodologies and Data. Rheum Dis Clin North Am. 2018;44(2):215–65. Epub 2018/04/07. doi: 10.1016/j.rdc.2018.01.010 29622293.
95. National Health and Nutrition Examination Survey 1999–2016 Survey Content Brochure [Dec. 19, 2018]. Available from: https://www.cdc.gov/nchs/data/nhanes/survey_content_99_16.pdf.
96. National Health and Nutrition Examination Survey. Historical summary of component content over time: NHANES I (1971–75) through NHANES 2005–06 [Dec. 19, 2018]. Available from: https://wwwn.cdc.gov/nchs/data/nhanes/Historical_NHANES_component_matrix.pdf.
97. Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr Pract. 2012; 18(6):988–1028. doi: 10.4158/EP12280.GL 23246686.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome