Pepsin promotes laryngopharyngeal neoplasia by modulating signaling pathways to induce cell proliferation
Autoři:
Kai Niu aff001; Chunjie Guo aff002; Shiyong Teng aff003; Dandan Zhou aff002; Shuyuan Yu aff001; Wanzhong Yin aff001; Ping Wang aff001; Wei Zhu aff001; Maoli Duan aff004
Působiště autorů:
Department of Otolaryngology Head and Neck Surgery, the First Hospital of Jilin University, Changchun, PR China
aff001; Department of Radiology, the First Hospital of Jilin University, Changchun, PR China
aff002; Department of Anesthesiology, the First Hospital of Jilin University, Changchun, PR China
aff003; Department of Clinical Science, Intervention and Technology, Department of Otolaryngology Head and Neck Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
aff004
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227408
Souhrn
Pepsin plays an important role in laryngopharyngeal reflux (LPR), a risk factor for the development of hypopharyngeal squamous cell carcinomas (HPSCC). However, the role of pepsin in HPSCC is not clear. We show by immunohistochemistry that pepsin positivity occurs in a significant proportion of human primary HPSCC specimens, and in many cases matched adjacent uninvolved epithelia are negative for pepsin. Pepsin positivity is associated with nodal involvement, suggesting that pepsin may have a role in metastasis. Treatment of FaDu cancer cells with pepsin increased cell proliferation, possibly by inducing G1/S transition. We also observed significant changes in expression of genes involved in NF-kappaB, TRAIL and Notch signaling. Our data suggest that pepsin plays an important role in HPSCC and that targeting pepsin could have potential therapeutic benefits.
Klíčová slova:
Cancer treatment – Carcinogenesis – Cell proliferation – Cell staining – Cytokines – Notch signaling – Pepsins – Pepsin treatment
Zdroje
1. Mehanna H, Paleri V, West CM, Nutting C. Head and neck cancer—Part 1: Epidemiology, presentation, and prevention. Bmj. 2010;341:c4684. doi: 10.1136/bmj.c4684 20855405.
2. Langevin SM, Michaud DS, Marsit CJ, Nelson HH, Birnbaum AE, Eliot M, et al. Gastric reflux is an independent risk factor for laryngopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2013;22(6):1061–8. doi: 10.1158/1055-9965.EPI-13-0183 23703970; PubMed Central PMCID: PMC3681904.
3. Wilson JA. What is the evidence that gastroesophageal reflux is involved in the etiology of laryngeal cancer? Current Opinion in Otolaryngology & Head & Neck Surgery. 2005;13(2):97.
4. Elserag HB, Hepworth EJ, Lee P, Sonnenberg A. Gastroesophageal reflux disease is a risk factor for laryngeal and pharyngeal cancer. Am J Gastroenterol. 2001;96(7):2013–8. doi: 10.1111/j.1572-0241.2001.03934.x 11467626
5. Lagergren J, Lindam A. Increased risk of laryngeal and pharyngeal cancer after gastrectomy for ulcer disease in a population-based cohort study. British journal of cancer. 2012;106(7):1342–5. doi: 10.1038/bjc.2012.72 22453126
6. Bacciu A, Mercante G, Ingegnoli A, Ferri T, Muzzetto P, Leandro G, et al. Effects of gastroesophageal reflux disease in laryngeal carcinoma. Clinical otolaryngology and allied sciences. 2004;29(5):545–8. doi: 10.1111/j.1365-2273.2004.00851.x 15373871.
7. Johnston N, Wells CW, Blumin JH, Toohill RJ, Merati AL. Receptor-mediated uptake of pepsin by laryngeal epithelial cells. The Annals of otology, rhinology, and laryngology. 2007;116(12):934–8. doi: 10.1177/000348940711601211 18217514.
8. Johnston N, Yan JC, Hoekzema CR, Samuels TL, Stoner GD, Blumin JH, et al. Pepsin promotes proliferation of laryngeal and pharyngeal epithelial cells. Laryngoscope. 2012;122(6):1317–25. doi: 10.1002/lary.23307 22570308; PubMed Central PMCID: PMC3816638.
9. Kelly EA, Samuels TL, Johnston N. Chronic pepsin exposure promotes anchorage-independent growth and migration of a hypopharyngeal squamous cell line. Otolaryngology—head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2014;150(4):618–24. doi: 10.1177/0194599813517862 24376122; PubMed Central PMCID: PMC4423599.
10. Souza RF. From Reflux Esophagitis to Esophageal Adenocarcinoma. Digestive diseases. 2016;34(5):483–90. doi: 10.1159/000445225 27331918; PubMed Central PMCID: PMC4936412.
11. Lagergren J, Bergström R, Lindgren A, Nyrén O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. New Engl J Med. 2000;45(12):2367–8.
12. Abdel-Latif MM, O'Riordan J, Windle HJ, Carton E, Ravi N, Kelleher D, et al. NF-kappaB activation in esophageal adenocarcinoma: relationship to Barrett's metaplasia, survival, and response to neoadjuvant chemoradiotherapy. Annals of surgery. 2004;239(4):491–500. doi: 10.1097/01.sla.0000118751.95179.c6 15024310
13. Samuels TL, Johnston N. Pepsin as a causal agent of inflammation during nonacidic reflux. Otolaryngol Head Neck Surg. 2009;141(3):559–63.
14. Bardhan KD, Strugala V, Dettmar PW. Reflux revisited: advancing the role of pepsin. International journal of otolaryngology. 2012;2012:646901. doi: 10.1155/2012/646901 22242022; PubMed Central PMCID: PMC3216344.
15. Campagnolo AM, Priston J, Thoen RH, Medeiros T, Assuncao AR. Laryngopharyngeal reflux: diagnosis, treatment, and latest research. International archives of otorhinolaryngology. 2014;18(2):184–91. doi: 10.1055/s-0033-1352504 25992088; PubMed Central PMCID: PMC4297018.
16. Knight J, Lively MO, Johnston N, Dettmar PW, Koufman JA. Sensitive pepsin immunoassay for detection of laryngopharyngeal reflux. Laryngoscope. 2010;115(8):1473–8.
17. Adams J, Heintz P, Gross N, Andersen P, Everts E, Wax M, et al. Acid/pepsin promotion of carcinogenesis in the hamster cheek pouch. Archives of otolaryngology—head & neck surgery. 2000;126(3):405–9.
18. Johnston N, Wells CW, Samuels TL, Blumin JH. Rationale for targeting pepsin in the treatment of reflux disease. The Annals of otology, rhinology, and laryngology. 2010;119(8):547–58. doi: 10.1177/000348941011900808 20860281.
19. Willingham MC, Hanover JA, Dickson RB, Pastan I. Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells. Proc Natl Acad Sci U S A. 1984;81(1):175–9. doi: 10.1073/pnas.81.1.175 6141558; PubMed Central PMCID: PMC344633.
20. Hayden MS, Ghosh S. Regulation of NF-kappaB by TNF family cytokines. Seminars in immunology. 2014;26(3):253–66. doi: 10.1016/j.smim.2014.05.004 24958609; PubMed Central PMCID: PMC4156877.
21. Malinin NL, Boldin MP, Kovalenko AV, Wallach D. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature. 1997;385(6616):540–4. doi: 10.1038/385540a0 9020361.
22. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441(7092):431–6. doi: 10.1038/nature04870 16724054
23. Allen CT, Ricker JL, Chen Z, Van Waes C. Role of activated nuclear factor‐κB in the pathogenesis and therapy of squamous cell carcinoma of the head and neck. Head & neck. 2010;29(10):959–71.
24. Klein JD, Grandis JR. The Molecular Pathogenesis of Head and Neck Cancer. Cancer Biol Ther. 2010;9(1):1–7. doi: 10.4161/cbt.9.1.10905 20038820
25. Yu L, Mu Y, Sa N, Wang H, Xu W. Tumor necrosis factor alpha induces epithelial-mesenchymal transition and promotes metastasis via NF-kappaB signaling pathway-mediated TWIST expression in hypopharyngeal cancer. Oncol Rep. 2014;31(1):321–7. doi: 10.3892/or.2013.2841 24220622.
26. Sasaki CT, Issaeva N, Vageli DP. In vitro model for gastroduodenal reflux-induced nuclear factor-kappaB activation and its role in hypopharyngeal carcinogenesis. Head & neck. 2016;38 Suppl 1:E1381–91. doi: 10.1002/hed.24231 26559497.
27. Sasaki CT, Toman J, Vageli D. The In Vitro Effect of Acidic-Pepsin on Nuclear Factor KappaB Activation and Its Related Oncogenic Effect on Normal Human Hypopharyngeal Cells. Plos One. 2016;11(12):e0168269. doi: 10.1371/journal.pone.0168269 27973541; PubMed Central PMCID: PMC5156414.
28. Yoldas B, Ozer C, Ozen O, Canpolat T, Dogan I, Griffith TS, et al. Clinical significance of TRAIL and TRAIL receptors in patients with head and neck cancer. Head & neck. 2011;33(9):1278–84. doi: 10.1002/hed.21598 21837697.
29. Wu GSJCL. TRAIL as a target in anti-cancer therapy. 2009;285(1):1–5.
30. Ren X, Xu Z, Myers JN, Wu X. Bypass NFkappaB-mediated survival pathways by TRAIL and Smac. Cancer Biol Ther. 2007;6(7):1031–5. Epub 2007/07/06. doi: 10.4161/cbt.6.7.4206 17611406.
31. Gordon WR, Arnett KL, Blacklow SC. The molecular logic of Notch signaling—a structural and biochemical perspective. J Cell Sci. 2008;121(Pt 19):3109–19. doi: 10.1242/jcs.035683 18799787; PubMed Central PMCID: PMC2696053.
32. Kalaitzidis D, Armstrong SA. Cancer: The flipside of Notch. Nature. 2011;473(7346):159–60. doi: 10.1038/473159a 21562551.
33. Zhao YY, Yu GT, Xiao T, Hu J. The Notch signaling pathway in head and neck squamous cell carcinoma: A meta-analysis. Advances in clinical and experimental medicine: official organ Wroclaw Medical University. 2017;26(5):881–7. doi: 10.17219/acem/64000 29068587.
34. Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. Embo J. 1999;18(8):2196–207. doi: 10.1093/emboj/18.8.2196 10205173; PubMed Central PMCID: PMC1171303.
35. Massie CE, Spiteri I, Ross-Adams H, Luxton H, Kay J, Whitaker HC, et al. HES5 silencing is an early and recurrent change in prostate tumourigenesis. Endocrine-related cancer. 2015;22(2):131–44. doi: 10.1530/ERC-14-0454 25560400; PubMed Central PMCID: PMC4335379.
36. <oncotarget-07-50437.pdf>.
37. Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, et al. TNFalpha enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun. 2012;424(1):58–64. doi: 10.1016/j.bbrc.2012.06.065 22728043; PubMed Central PMCID: PMC3488595.
38. Wirth M, Jira D, Ott A, Piontek G, Pickhard A. High NOTCH1 mRNA Expression Is Associated with Better Survival in HNSCC. Int J Mol Sci. 2018;19(3). doi: 10.3390/ijms19030830 29533972; PubMed Central PMCID: PMC5877691.
39. Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82. doi: 10.1038/nature14129 25631445; PubMed Central PMCID: PMC4311405.
40. Nyman P, Buehler D, Lambert PF. Loss of Function of Canonical Notch Signaling Drives Head and Neck Carcinogenesis. Clin Cancer Res. 2018. doi: 10.1158/1078-0432.CCR-17-3535 30087145.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy