The evolution of secondary flow phenomena and their effect on primary shock conditions in shock tubes: Experimentation and numerical model
Autoři:
Sudeepto Kahali aff001; Molly Townsend aff002; Melissa Mendez Nguyen aff002; Jeffrey Kim aff002; Eren Alay aff002; Maciej Skotak aff002; Namas Chandra aff002
Působiště autorů:
Department of Mechanical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
aff001; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227125
Souhrn
Compressed gas-driven shock tubes are widely used for laboratory simulation of primary blasts by accurately replicating pressure profiles measured in live-fire explosions. These investigations require sound characterization of the primary blast wave, including the temporal and spatial evolution of the static and dynamic components of the blast wave. The goal of this work is to characterize the propagation of shock waves in and around the exit of a shock tube via analysis of the primary shock flow, including shock wave propagation and decay of the shock front, and secondary flow phenomena. To this end, a nine-inch shock tube and a cylindrical sensing apparatus were used to determine incident and total pressures outside of the shock tube, highlighting the presence of additional flow phenomena. Blast overpressure, impulse, shock wave arrival times, positive phase duration, and shock wave planarity were examined using a finite element model of the system. The shock wave remained planar inside of the shock tube and lost its planarity upon exiting. The peak overpressure and pressure impulse decayed rapidly upon exit from the shock tube, reducing by 92–95%. The primary flow phenomenon, or the planar shock front, is observed within the shock tube, while two distinct flow phenomena are a result of the shock wave exiting the confines of the shock tube. A vortex ring is formed as the shock wave exited the shock tube into the still, ambient air, which induces a large increase in the total pressure impulse. Additionally, a rarefaction wave was formed following shock front expansion, which traveled upstream into the shock tube, reducing the total and incident pressure impulses for approximately half of the simulated region.
Klíčová slova:
Animal models – Diffraction – Flow field – High pressure – Reflection – Simulation and modeling – Traumatic brain injury – Velocity
Zdroje
1. Southard EE. Shell-shock and other neuropsychiatric problems: WM Leonard; 1919.
2. Jones E, Fear NT, Wessely S. Shell shock and mild traumatic brain injury: a historical review. Am J Psychiatry. 2007;164(11):1641–5. Epub 2007/11/03. doi: 10.1176/appi.ajp.2007.07071180 17974926.
3. Stuhmiller JH. Blast Injury: Translating Research Into Operational Medicine. Santee WR, Fried KE, editors: United States Dept. of Defense; 2008.
4. Clemedson C, Criborn C. A detonation chamber for physiological blast research. The Journal of aviation medicine. 1955;26(5):373. 13263274
5. Henshall BD, Aeronautical Research C. On some aspects of the use of shock tubes in aerodynamic research. London: H.M. Stationery Off.; 1957.
6. Griffith W. Shock-tube studies of transonic flow over wedge profiles. Journal of the Aeronautical Sciences. 1952;19(4):249–57.
7. Frohn A, De Boer P. Measurement of ionization relaxation times in shock tubes. The Physics of Fluids. 1969;12(5):I-54–I-7.
8. Hertzberg A. A shock tube method of generating hypersonic flows. Journal of the Aeronautical Sciences. 1951;18(12):803–4.
9. Masel BE, Bell RS, Brossart S, Grill RJ, Hayes RL, Levin HS, et al. Galveston Brain Injury Conference 2010: clinical and experimental aspects of blast injury. Journal of neurotrauma. 2012;29(12):2143–71. doi: 10.1089/neu.2011.2258 22655746
10. Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA. Mild traumatic brain injury in US Soldiers returning from Iraq. New England Journal of Medicine. 2008;358(5):453–63. doi: 10.1056/NEJMoa072972 18234750
11. Koroteeva EY, Znamenskaya I, Glazyrin F, Sysoev N. Numerical and experimental study of shock waves emanating from an open-ended rectangular tube. Shock Waves. 2016;26(3):269–77.
12. Chandra N, Sundaramurthy A. Acute Pathophysiology of Blast Injury—From Biomechanics to Experiments and Computations. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton, FL: Taylor & Francis Group; 2015. p. 199–255.
13. Chandra N, Sundaramurthy A, Gupta RK. Validation of Laboratory Animal and Surrogate Human Models in Primary Blast Injury Studies. Mil Med. 2017;182(S1):105–13. Epub 2017/03/16. doi: 10.7205/MILMED-D-16-00144 28291460.
14. Arakeri J, Das D, Krothapalli A, Lourenco L. Vortex ring formation at the open end of a shock tube: A particle image velocimetry study. Physics of fluids. 2004;16(4):1008–19.
15. Onodera O, Jiang Z, Takayama K. Holographic Interferometric Observation of Shock Waves Discharged from an Open-Eng of a Square Cross-Sectional Shock Tube. JSME International Journal Series B Fluids and Thermal Engineering. 1998;41(2):408–15.
16. Elder F Jr, De Haas N. Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube. Journal of Applied Physics. 1952;23(10):1065–9.
17. Murugan T, De S, Dora C, Das D, Kumar PP. A study of the counter rotating vortex rings interacting with the primary vortex ring in shock tube generated flows. Fluid Dynamics Research. 2013;45(2):025506.
18. Murugan T, De S, Dora C, Das D. Numerical simulation and PIV study of compressible vortex ring evolution. Shock waves. 2012;22(1):69–83.
19. Abe A, Takayama K. Numerical simulation and density measurement of a shock wave discharged from the open end of a shock tube. JSME international journal Ser 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties. 1990;33(2):216–23.
20. Mariani R, Kontis K. Experimental studies on coaxial vortex loops. Physics of Fluids. 2010;22(12):126102.
21. Condon JA, Lottero RE, Loucks RB. Construction and Testing of the ARL 1.68-m Diameter Shock Tube Exit Jet Spreader for Non-Ideal Blast Simulation. ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD, 1997.
22. Murugan T, De S, Sreevatsa A, Dutta S. Numerical simulation of a compressible vortex–wall interaction. Shock Waves. 2016;26(3):311–26.
23. Murugan T, Dora CL, De S, Das D. A comparative three-dimensional study of impulsive flow emanating from a shock tube for shock Mach number 1.6. Journal of Visualization. 2018;21(6):921–34.
24. Zare-Behtash H, Kontis K, Gongora-Orozco N. Experimental investigations of compressible vortex loops. Physics of Fluids. 2008;20(12):126105.
25. Maeno K, Kaneta T, Morioka T, Honma H. Pseudo-schlieren CT measurement of three-dimensional flow phenomena on shock waves and vortices discharged from open ends. Shock Waves. 2005;14(4):239–49.
26. Abdul-Muneer PM, Schuetz H, Wang F, Skotak M, Jones J, Gorantla S, et al. Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med. 2013;60:282–91. doi: 10.1016/j.freeradbiomed.2013.02.029 23466554.
27. Needham CE, Ritzel D, Rule GT, Wiri S, Young L. Blast Testing Issues and TBI: Experimental Models That Lead to Wrong Conclusions. Front Neurol. 2015;6:72. Epub 2015/04/24. doi: 10.3389/fneur.2015.00072 25904891.
28. Sundaramurthy A, Alai A, Ganpule S, Holmberg A, Plougonven E, Chandra N. Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model. J Neurotrauma. 2012;29(13):2352–64. Epub 2012/05/25. doi: 10.1089/neu.2012.2413 22620716.
29. Kuriakose M, Skotak M, Misistia A, Kahali S, Sundaramurthy A, Chandra N. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen. PloS one. 2016;11(9):e0161597. doi: 10.1371/journal.pone.0161597 27603017
30. Holmberg A. Development and Characterization of Shock Tubes for Laboratory Scale Blast Wave Simulation: University of Nebraska, Lincoln; 2010.
31. Coulter GA. Blast wave loading of a two-dimensional circular cylinder. ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD, 1982.
32. Skotak M, Alay E, Chandra N. On the accurate determination of shock wave time-pressure profile in the experimental models of blast induced neurotrauma. Frontiers in Neurology. 2018;9:52. doi: 10.3389/fneur.2018.00052 29467718
33. Abate G, Shyy W. Dynamic structure of confined shocks undergoing sudden expansion. Progress in Aerospace Sciences. 2002;38:23–42. https://doi.org/10.1016/S0376-0421(01)00016-1.
34. Chisnell RF. The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. Journal of Fluid Mechanics. 1957;2(3):286–98. doi: 10.1017/S0022112057000130
35. Skews BW. The perturbed region behind a diffracting shock wave. Journal of Fluid Mechanics. 1967;29(4):705–19.
36. Kinney GF, Graham KJ. Explosive Shocks in Air. 2nd ed: Springer Science; 1985.
37. Mohseni K. A formulation for calculating the translational velocity of a vortex ring or pair. Bioinspiration & biomimetics. 2006;1(4):S57.
38. Jiang Z, Onodera O, Takayama K. Evolution of shock waves and the primary vortex loop discharged from a square cross-sectional tube. Shock Waves. 1999;9(1):1–10. doi: 10.1007/s001930050133
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- Kde se vzal COVID-19: Mohou za pandemii nakažená zvířata, nebo únik viru z laboratoře?
- Jak se liší věk jednotlivých orgánů v našem těle?
- „Jednohubky“ z klinického výzkumu – 2025/1
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy