Enhanced handover mechanism using mobility prediction in wireless networks
Autoři:
Khong-Lim Yap aff001; Yung-Wey Chong aff001; Weixia Liu aff002
Působiště autorů:
National Advanced IPv6 Centre, Universiti Sains Malaysia, USM, Penang, Malaysia
aff001; Internet Innovation Research Center, Minjiang University, Fuzhou, China
aff002
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227982
Souhrn
The rapid increase in the usage of the mobile internet has led to a great expansion of cellular data networks in order to provide better quality of service. However, the cost to expand the cellular network is high. One of the solutions to provide affordable wireless connectivity is the deployment of a WiFi access point to offload users’ data usage. Nevertheless, the frequent and inefficient handover process between the WiFi AP and cellular network, especially when the mobile device is on the go, may degrade the network performance. Mobile devices do not have the intelligence to select the optimal network to enhance the quality of service (QoS). This paper presents an enhanced handover mechanism using mobility prediction (eHMP) to assist mobile devices in the handover process so that users can experience seamless connectivity. eHMP is tested in two wireless architectures, homogeneous and heterogeneous networks. The network performance significantly improved when eHMP is used in a homogeneous network, where the network throughput increases by 106% and the rate of retransmission decreases by 85%. When eHMP is used in a heterogeneous network, the network throughput increases by 55% and the retransmission rate decreases by 75%. The findings presented in this paper reveal that mobility prediction coupled with the multipath protocol can improve the QoS for mobile devices. These results will contribute to a better understanding of how the network service provider can offload traffic to the WiFi network without experiencing performance degradation.
Klíčová slova:
Algorithms – Communication equipment – Computer networks – Forecasting – Hidden Markov models – Human mobility – Intelligence – Internet
Zdroje
1. Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017-2022. White Paper. 2019. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
2. Murad K, Kijun H. An Optimized Network Selection and Handoer Triggering Scheme for Heterogeneous Self-Organized Wireless Networks. Mathematical Problems in Engineering. 2014.
3. Lv Q, Mei Z, Qiao Y, Zhong Y, Lei Z. Hidden Markov Model based user mobility analysis in LTE network. 2014 International Symposium on Wireless Personal Multimedia Communications (WPMC). 2014 Sept;379–384.
4. Stynes D, Brown KN, Sreenan CJ. A probabilistic approach to user mobility prediction for wireless services. 2016 International Wireless Communications and Mobile Computing Conference (IWCMC). 2016 Sept;120–125.
5. Paasch C, Detal G, Duchene F, Raiciu C, Bonaventure O. Exploring Mobile/WiFi Handover with Multipath TCP. Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations, challenges, and future design. 2012 Aug; 31–36.
6. Frömmgen A, Sadasivam S, Müller S, Klein A, Buchmann A. Poster: Use Your Senses: A Smooth Multipath TCP WiFi/Mobile Handover. Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. 2015 Sept; 248–250.
7. Yap K.L., Chong Y.W, Ko K. Progressive Mobility Prediction using Dual Hidden Markov Model for Optimized Access Point Selection. 2018 International Conference on Green and Human Information Technology. 2018; 15–20.
8. Perkins C. IP Mobility Support for IPv4. https://tools.ietf.org/html/rfc3344. 2002.
9. Pupatwibul P., Banjar A., AL Sabbagh A., Braun R. Developing an application based on OpenFlow to enhance mobile IP networks 38th Annual IEEE Conference on Local Computer Networks—Workshops. 2013; 936–940.
10. Wang Y., Bi J. A solution for IP mobility support in software defined networks 2014 23rd International Conference on Computer Communication and Networks (ICCCN). 2014; 1–8.
11. Kim S. M., Choi H. Y., Park P. W., Min S. G., Han Y. H. OpenFlow-based Proxy mobile IPv6 over software defined network (SDN) 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC). 2014; 119–125.
12. Ford A., Raiciu C., Handley M., Barre S., Iyengar J. Architectural Guidelines for Multipath TCP Development Request for Comments (RFC) 2011. https://tools.ietf.org/html/rfc6182.
13. Ford A., Raiciu C., Handley M., Bonaventure O. TCP Extensions for Multipath Operation with Multiple Addresses Request for Comments (RFC) 2013. https://tools.ietf.org/html/rfc6824.
14. Ben Cheikh A., Ayari M., Langar R., Pujolle G., Saidane L. A. Optimized Handoff with Mobility Prediction Scheme Using HMM for femtocell networks 2015 IEEE International Conference on Communications (ICC). 2015; 3448–3453.
15. Sung N.W., Pham N.T, Huynh T., Hwang W.J., You I., Choo K.K.R. Prediction-based association control scheme in dense femtocell networks PLOS ONE. 2017; 12 (3); 1–23. doi: 10.1371/journal.pone.0174220
16. Li X. An adaptive vertical handover method based on prediction for heterogeneous wireless networks 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). 2017; 2782–2787.
17. Hosny K.M., Khashaba M.M., Khedr W.I., Amer F.A. New vertical handover prediction schemes for LTE-WLAN heterogeneous networks PLOS ONE. 2019; 14 (4); 1–31. doi: 10.1371/journal.pone.0215334
18. Lv Q., Qiao Y., Ansari N., Liu J., Yang J. Big Data Driven Hidden Markov Model Based Individual Mobility Prediction at Points of Interest IEEE Transactions on Vehicular Technology. 2017; 66 (6); 5204–5216.
19. Rabiner L. R. A tutorial on hidden Markov models and selected applications in speech recognition Proceedings of the IEEE; 1989; 77 (2); 257–286.
20. Rabiner L., Juang B. An introduction to hidden Markov models IEEE ASSP Magazine. 1986; 3 (1); 4–16. doi: 10.1109/MASSP.1986.1165342
21. Poosamani N., Injong R. Wi-Fi Hotspot Auto-Discovery: A Practical & Energy-Aware System for Smart Objects Using Cellular Signals Proceedings of the 12th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services on 12th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. 2015; 90–99.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy